Spaces:
Runtime error
Runtime error
File size: 8,387 Bytes
18d9fce 72afcb8 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 07cafd6 1ec5a7d 18d9fce 07cafd6 1ec5a7d 18d9fce 07cafd6 1ec5a7d 18d9fce 07cafd6 1ec5a7d 18d9fce 07cafd6 1ec5a7d 18d9fce 07cafd6 1ec5a7d 18d9fce 07cafd6 1ec5a7d 18d9fce 1ec5a7d 07cafd6 1ec5a7d 18d9fce 07cafd6 1ec5a7d 18d9fce 07cafd6 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 18d9fce 1ec5a7d 72afcb8 1ec5a7d 72afcb8 1ec5a7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import streamlit as st
from streamlit.components.v1 import html
import matplotlib
try:
from imageio.v2 import imread
except:
from imageio import imread
import matplotlib.pyplot as plt
from stardist import random_label_cmap
from myoquant.src.common_func import (
load_cellpose,
load_stardist,
run_cellpose,
run_stardist,
is_gpu_availiable,
df_from_cellpose_mask,
df_from_stardist_mask,
)
from myoquant.src.HE_analysis import (
predict_all_cells,
extract_ROIs,
single_cell_analysis,
paint_histo_img,
)
st.set_page_config(
page_title="MyoQuant HE Analysis",
page_icon="🔬",
)
use_GPU = is_gpu_availiable()
@st.cache_resource
def st_load_cellpose():
return load_cellpose()
@st.cache_resource
def st_load_stardist():
return load_stardist()
@st.cache_data
def st_run_cellpose(image_ndarray, _model):
return run_cellpose(image_ndarray, _model)
@st.cache_data
def st_run_stardist(image_ndarray, _model, nms_thresh, prob_thresh):
return run_stardist(image_ndarray, _model, nms_thresh, prob_thresh)
@st.cache_data
def st_df_from_cellpose_mask(mask):
return df_from_cellpose_mask(mask)
@st.cache_data
def st_df_from_stardist_mask(mask):
return df_from_stardist_mask(mask)
@st.cache_data
def st_predict_all_cells(
image_ndarray, df_cellpose, mask_stardist, internalised_threshold
):
return predict_all_cells(
image_ndarray, df_cellpose, mask_stardist, internalised_threshold
)
@st.cache_data
def st_extract_ROIs(image_ndarray, selected_fiber, df_cellpose, mask_stardist):
return extract_ROIs(image_ndarray, selected_fiber, df_cellpose, mask_stardist)
@st.cache_data
def st_single_cell_analysis(
single_cell_img,
single_cell_mask,
df_nuc_single,
x_fiber,
y_fiber,
selected_fiber,
internalised_threshold,
draw_and_return=True,
):
return single_cell_analysis(
single_cell_img,
single_cell_mask,
df_nuc_single,
x_fiber,
y_fiber,
selected_fiber + 1,
internalised_threshold,
draw_and_return=True,
)
@st.cache_data
def st_paint_histo_img(image_ndarray, df_cellpose, cellpose_df_stat):
return paint_histo_img(image_ndarray, df_cellpose, cellpose_df_stat)
with st.sidebar:
st.write("Nuclei detection Parameters (Stardist)")
nms_thresh = st.slider("Stardist NMS Tresh", 0.0, 1.0, 0.4, 0.1)
prob_thresh = st.slider("Stardist Prob Tresh", 0.5, 1.0, 0.5, 0.05)
st.write("Nuclei Classification Parameter")
eccentricity_thresh = st.slider("Eccentricity Score Tresh", 0.0, 1.0, 0.75, 0.05)
model_cellpose = st_load_cellpose()
model_stardist = st_load_stardist()
st.title("HE Staining Analysis")
st.write(
"This demo will automatically detect cells and nucleus in the image and try to quantify a certain number of features."
)
st.write("Upload your HE Staining image")
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
image_ndarray = imread(uploaded_file)
st.write("Raw Image")
image = st.image(uploaded_file)
mask_cellpose = st_run_cellpose(image_ndarray, model_cellpose)
mask_stardist = st_run_stardist(
image_ndarray, model_stardist, nms_thresh, prob_thresh
)
mask_stardist_copy = mask_stardist.copy()
st.header("Segmentation Results")
st.subheader("CellPose and Stardist overlayed results")
fig, ax = plt.subplots(1, 1)
ax.imshow(mask_cellpose, cmap="viridis")
lbl_cmap = random_label_cmap()
ax.imshow(mask_stardist, cmap=lbl_cmap, alpha=0.5)
ax.axis("off")
st.pyplot(fig)
st.subheader("All cells detected by CellPose")
df_cellpose = st_df_from_cellpose_mask(mask_cellpose)
st.header("Full Nucleus Analysis Results")
cellpose_df_stat, all_nuc_df_stats = st_predict_all_cells(
image_ndarray,
df_cellpose,
mask_stardist,
internalised_threshold=eccentricity_thresh,
)
st.dataframe(
cellpose_df_stat.drop(
[
"centroid-0",
"centroid-1",
"bbox-0",
"bbox-1",
"bbox-2",
"bbox-3",
"image",
],
axis=1,
)
)
st.write("Total number of nucleus : ", cellpose_df_stat["N° Nuc"].sum())
st.write(
"Total number of internalized nucleus : ",
cellpose_df_stat["N° Nuc Intern"].sum(),
" (",
round(
100
* cellpose_df_stat["N° Nuc Intern"].sum()
/ cellpose_df_stat["N° Nuc"].sum(),
2,
),
"%)",
)
st.write(
"Total number of peripherical nucleus : ",
cellpose_df_stat["N° Nuc Periph"].sum(),
" (",
round(
100
* cellpose_df_stat["N° Nuc Periph"].sum()
/ cellpose_df_stat["N° Nuc"].sum(),
2,
),
"%)",
)
st.write(
"Number of cell with at least one internalized nucleus : ",
cellpose_df_stat["N° Nuc Intern"].astype(bool).sum(axis=0),
" (",
round(
100
* cellpose_df_stat["N° Nuc Intern"].astype(bool).sum(axis=0)
/ len(cellpose_df_stat),
2,
),
"%)",
)
st.header("Single Nucleus Analysis Details")
selected_fiber = st.selectbox("Select a cell", list(range(len(df_cellpose))))
selected_fiber = int(selected_fiber)
(
single_cell_img,
nucleus_single_cell_img,
single_cell_mask,
df_nuc_single,
) = st_extract_ROIs(image_ndarray, selected_fiber, df_cellpose, mask_stardist)
# df_nuc_single = df_from_stardist_mask(mask_stardist)
st.markdown(
"""
* White point represent cell centroid.
* Green point represent nucleus centroid. Green dashed line represent the fiber centrer - nucleus distance.
* Red point represent the cell border from a straight line between the cell centroid and the nucleus centroid. The red dashed line represent distance between the nucelus and the cell border.
* The periphery ratio is calculated by the division of the distance centroid - nucleus and the distance centroid - cell border."""
)
fig2, (ax1, ax2) = plt.subplots(1, 2)
ax1.imshow(single_cell_img)
ax2.imshow(nucleus_single_cell_img, cmap="viridis")
# Plot Fiber centroid
x_fiber = df_cellpose.iloc[selected_fiber, 3] - df_cellpose.iloc[selected_fiber, 6]
y_fiber = df_cellpose.iloc[selected_fiber, 2] - df_cellpose.iloc[selected_fiber, 5]
(
n_nuc,
n_nuc_intern,
n_nuc_periph,
df_nuc_single_stats,
ax_nuc,
) = st_single_cell_analysis(
single_cell_img,
single_cell_mask,
df_nuc_single,
x_fiber,
y_fiber,
selected_fiber + 1,
internalised_threshold=eccentricity_thresh,
draw_and_return=True,
)
for index, value in df_nuc_single_stats.iterrows():
st.write("Nucleus #{} has a periphery ratio of: {}".format(index, value[12]))
ax1.axis("off")
ax2.axis("off")
# st.pyplot(fig2)
ax_nuc.imshow(single_cell_img)
ax_nuc.imshow(nucleus_single_cell_img, cmap="viridis", alpha=0.5)
f = ax_nuc.figure
st.pyplot(fig2)
st.pyplot(f)
st.subheader("All nucleus inside selected cell")
st.dataframe(
df_nuc_single_stats.drop(
[
"centroid-0",
"centroid-1",
"bbox-0",
"bbox-1",
"bbox-2",
"bbox-3",
"image",
],
axis=1,
)
)
st.header("Painted predicted image")
st.write(
"Green color indicates cells with only peripherical nuclei, red color indicates cells with at least one internal nucleus."
)
painted_img = st_paint_histo_img(image_ndarray, df_cellpose, cellpose_df_stat)
fig4, ax4 = plt.subplots(1, 1)
cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
"", ["white", "green", "red"]
)
ax4.imshow(image_ndarray)
ax4.imshow(painted_img, cmap=cmap, alpha=0.5)
ax4.axis("off")
st.pyplot(fig4)
html(
f"""
<script defer data-domain="lbgi.fr/myoquant" src="https://plausible.cmeyer.fr/js/script.js"></script>
"""
)
|