Spaces:
Runtime error
Runtime error
File size: 11,596 Bytes
a6dac9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
"""
TResNet: High Performance GPU-Dedicated Architecture
https://arxiv.org/pdf/2003.13630.pdf
Original model: https://github.com/mrT23/TResNet
"""
from collections import OrderedDict
import torch
import torch.nn as nn
from .helpers import build_model_with_cfg
from .layers import SpaceToDepthModule, BlurPool2d, InplaceAbn, ClassifierHead, SEModule
from .registry import register_model
__all__ = ['tresnet_m', 'tresnet_l', 'tresnet_xl']
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': (0, 0, 0), 'std': (1, 1, 1),
'first_conv': 'body.conv1.0', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = {
'tresnet_m': _cfg(
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/tresnet_m_1k_miil_83_1.pth'),
'tresnet_m_miil_in21k': _cfg(
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/tresnet_m_miil_in21k.pth', num_classes=11221),
'tresnet_l': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_81_5-235b486c.pth'),
'tresnet_xl': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_xl_82_0-a2d51b00.pth'),
'tresnet_m_448': _cfg(
input_size=(3, 448, 448), pool_size=(14, 14),
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_m_448-bc359d10.pth'),
'tresnet_l_448': _cfg(
input_size=(3, 448, 448), pool_size=(14, 14),
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_448-940d0cd1.pth'),
'tresnet_xl_448': _cfg(
input_size=(3, 448, 448), pool_size=(14, 14),
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_xl_448-8c1815de.pth')
}
def IABN2Float(module: nn.Module) -> nn.Module:
"""If `module` is IABN don't use half precision."""
if isinstance(module, InplaceAbn):
module.float()
for child in module.children():
IABN2Float(child)
return module
def conv2d_iabn(ni, nf, stride, kernel_size=3, groups=1, act_layer="leaky_relu", act_param=1e-2):
return nn.Sequential(
nn.Conv2d(
ni, nf, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=groups, bias=False),
InplaceAbn(nf, act_layer=act_layer, act_param=act_param)
)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True, aa_layer=None):
super(BasicBlock, self).__init__()
if stride == 1:
self.conv1 = conv2d_iabn(inplanes, planes, stride=1, act_param=1e-3)
else:
if aa_layer is None:
self.conv1 = conv2d_iabn(inplanes, planes, stride=2, act_param=1e-3)
else:
self.conv1 = nn.Sequential(
conv2d_iabn(inplanes, planes, stride=1, act_param=1e-3),
aa_layer(channels=planes, filt_size=3, stride=2))
self.conv2 = conv2d_iabn(planes, planes, stride=1, act_layer="identity")
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
rd_chs = max(planes * self.expansion // 4, 64)
self.se = SEModule(planes * self.expansion, rd_channels=rd_chs) if use_se else None
def forward(self, x):
if self.downsample is not None:
shortcut = self.downsample(x)
else:
shortcut = x
out = self.conv1(x)
out = self.conv2(out)
if self.se is not None:
out = self.se(out)
out += shortcut
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True,
act_layer="leaky_relu", aa_layer=None):
super(Bottleneck, self).__init__()
self.conv1 = conv2d_iabn(
inplanes, planes, kernel_size=1, stride=1, act_layer=act_layer, act_param=1e-3)
if stride == 1:
self.conv2 = conv2d_iabn(
planes, planes, kernel_size=3, stride=1, act_layer=act_layer, act_param=1e-3)
else:
if aa_layer is None:
self.conv2 = conv2d_iabn(
planes, planes, kernel_size=3, stride=2, act_layer=act_layer, act_param=1e-3)
else:
self.conv2 = nn.Sequential(
conv2d_iabn(planes, planes, kernel_size=3, stride=1, act_layer=act_layer, act_param=1e-3),
aa_layer(channels=planes, filt_size=3, stride=2))
reduction_chs = max(planes * self.expansion // 8, 64)
self.se = SEModule(planes, rd_channels=reduction_chs) if use_se else None
self.conv3 = conv2d_iabn(
planes, planes * self.expansion, kernel_size=1, stride=1, act_layer="identity")
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
if self.downsample is not None:
shortcut = self.downsample(x)
else:
shortcut = x
out = self.conv1(x)
out = self.conv2(out)
if self.se is not None:
out = self.se(out)
out = self.conv3(out)
out = out + shortcut # no inplace
out = self.relu(out)
return out
class TResNet(nn.Module):
def __init__(self, layers, in_chans=3, num_classes=1000, width_factor=1.0, global_pool='fast', drop_rate=0.):
self.num_classes = num_classes
self.drop_rate = drop_rate
super(TResNet, self).__init__()
aa_layer = BlurPool2d
# TResnet stages
self.inplanes = int(64 * width_factor)
self.planes = int(64 * width_factor)
conv1 = conv2d_iabn(in_chans * 16, self.planes, stride=1, kernel_size=3)
layer1 = self._make_layer(
BasicBlock, self.planes, layers[0], stride=1, use_se=True, aa_layer=aa_layer) # 56x56
layer2 = self._make_layer(
BasicBlock, self.planes * 2, layers[1], stride=2, use_se=True, aa_layer=aa_layer) # 28x28
layer3 = self._make_layer(
Bottleneck, self.planes * 4, layers[2], stride=2, use_se=True, aa_layer=aa_layer) # 14x14
layer4 = self._make_layer(
Bottleneck, self.planes * 8, layers[3], stride=2, use_se=False, aa_layer=aa_layer) # 7x7
# body
self.body = nn.Sequential(OrderedDict([
('SpaceToDepth', SpaceToDepthModule()),
('conv1', conv1),
('layer1', layer1),
('layer2', layer2),
('layer3', layer3),
('layer4', layer4)]))
self.feature_info = [
dict(num_chs=self.planes, reduction=2, module=''), # Not with S2D?
dict(num_chs=self.planes, reduction=4, module='body.layer1'),
dict(num_chs=self.planes * 2, reduction=8, module='body.layer2'),
dict(num_chs=self.planes * 4 * Bottleneck.expansion, reduction=16, module='body.layer3'),
dict(num_chs=self.planes * 8 * Bottleneck.expansion, reduction=32, module='body.layer4'),
]
# head
self.num_features = (self.planes * 8) * Bottleneck.expansion
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
# model initilization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, InplaceAbn):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# residual connections special initialization
for m in self.modules():
if isinstance(m, BasicBlock):
m.conv2[1].weight = nn.Parameter(torch.zeros_like(m.conv2[1].weight)) # BN to zero
if isinstance(m, Bottleneck):
m.conv3[1].weight = nn.Parameter(torch.zeros_like(m.conv3[1].weight)) # BN to zero
if isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
def _make_layer(self, block, planes, blocks, stride=1, use_se=True, aa_layer=None):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
layers = []
if stride == 2:
# avg pooling before 1x1 conv
layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False))
layers += [conv2d_iabn(
self.inplanes, planes * block.expansion, kernel_size=1, stride=1, act_layer="identity")]
downsample = nn.Sequential(*layers)
layers = []
layers.append(block(
self.inplanes, planes, stride, downsample, use_se=use_se, aa_layer=aa_layer))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(
block(self.inplanes, planes, use_se=use_se, aa_layer=aa_layer))
return nn.Sequential(*layers)
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes, global_pool='fast'):
self.head = ClassifierHead(
self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
def forward_features(self, x):
return self.body(x)
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _create_tresnet(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
TResNet, variant, pretrained,
default_cfg=default_cfgs[variant],
feature_cfg=dict(out_indices=(1, 2, 3, 4), flatten_sequential=True),
**kwargs)
@register_model
def tresnet_m(pretrained=False, **kwargs):
model_kwargs = dict(layers=[3, 4, 11, 3], **kwargs)
return _create_tresnet('tresnet_m', pretrained=pretrained, **model_kwargs)
@register_model
def tresnet_m_miil_in21k(pretrained=False, **kwargs):
model_kwargs = dict(layers=[3, 4, 11, 3], **kwargs)
return _create_tresnet('tresnet_m_miil_in21k', pretrained=pretrained, **model_kwargs)
@register_model
def tresnet_l(pretrained=False, **kwargs):
model_kwargs = dict(layers=[4, 5, 18, 3], width_factor=1.2, **kwargs)
return _create_tresnet('tresnet_l', pretrained=pretrained, **model_kwargs)
@register_model
def tresnet_xl(pretrained=False, **kwargs):
model_kwargs = dict(layers=[4, 5, 24, 3], width_factor=1.3, **kwargs)
return _create_tresnet('tresnet_xl', pretrained=pretrained, **model_kwargs)
@register_model
def tresnet_m_448(pretrained=False, **kwargs):
model_kwargs = dict(layers=[3, 4, 11, 3], **kwargs)
return _create_tresnet('tresnet_m_448', pretrained=pretrained, **model_kwargs)
@register_model
def tresnet_l_448(pretrained=False, **kwargs):
model_kwargs = dict(layers=[4, 5, 18, 3], width_factor=1.2, **kwargs)
return _create_tresnet('tresnet_l_448', pretrained=pretrained, **model_kwargs)
@register_model
def tresnet_xl_448(pretrained=False, **kwargs):
model_kwargs = dict(layers=[4, 5, 24, 3], width_factor=1.3, **kwargs)
return _create_tresnet('tresnet_xl_448', pretrained=pretrained, **model_kwargs)
|