# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/5B. Text to semantic token modeling.ipynb. # %% auto 0 __all__ = ['load_datasets', 'rand', 'Tunables', 'Encoder', 'Decoder', 'TSARTransformer', 'make_model'] # %% ../nbs/5B. Text to semantic token modeling.ipynb 1 import dataclasses import random import math import torch import torch.nn as nn import torch.nn.functional as F from torch.profiler import record_function from huggingface_hub import hf_hub_download from fastcore.basics import store_attr from fastprogress import progress_bar import webdataset as wds # %% ../nbs/5B. Text to semantic token modeling.ipynb 2 from pathlib import Path import pylab as plt import pandas as pd import numpy as np # %% ../nbs/5B. Text to semantic token modeling.ipynb 3 import whisper from whisperspeech.train import * from whisperspeech.modules import * from whisperspeech import vq_stoks # %% ../nbs/5B. Text to semantic token modeling.ipynb 8 import re class CharTokenizer: """Trivial tokenizer – just use UTF-8 bytes""" eot = 0 def encode(self, txt): return list(bytes(txt.strip(), 'utf-8')) def decode(self, tokens): return bytes(tokens).decode('utf-8') def tokenizer(ikey, okey, length): """Tokenizes a transcript""" tok = CharTokenizer() def _tokenizer(samples): for s in samples: toks = torch.tensor(tok.encode(s[ikey])) s[okey] = F.pad(toks, (0, length - toks.shape[-1]), value=tok.eot) yield s return _tokenizer def ar_padder(ikey, okey, length, pad_token): """Pads the tokens for autoregresive training""" def _ar_padder(samples): for s in samples: toks = s[ikey] if isinstance(toks, (list, np.ndarray)): toks = torch.tensor(toks) toks = toks.to(torch.long) s['in_' +okey] = F.pad(toks, (1, length - toks.shape[-1] - 1), value=pad_token) s['out_'+okey] = F.pad(toks, (0, length - toks.shape[-1]), value=pad_token) yield s return _ar_padder def char_per_seconder(txt_key, stoks_key, cps_key, stoks_per_second=25): """Adds the characters per second metric to the input data""" def _char_per_seconder(samples): for s in samples: secs = s[stoks_key].shape[-1] / stoks_per_second s[cps_key] = len(s[txt_key]) / secs yield s return _char_per_seconder # %% ../nbs/5B. Text to semantic token modeling.ipynb 9 def build_speaker_map(shards): speakers = set() for shard in shards: with open(shard+'.speakers.txt') as f: speakers = speakers.union(set(x.strip() for x in f.readlines())) return {id:i for i,id in enumerate(speakers)} def speaker_id_extractor(speaker_map): def _extractor(samples): for s in samples: s['speaker'] = torch.tensor(speaker_map[s['__key__'].split("/")[1]]) yield s return _extractor # %% ../nbs/5B. Text to semantic token modeling.ipynb 10 def load_datasets( input:str, # webdataset folder or shard list samples:int, # samples per epoch subsample:float=1, # use a fraction of the files val_samples:int=512, vq_codes:int=4096, ): if isinstance(input, (Path, str)): path = Path(input) if path.is_dir(): glob = '*-t2s-*.tar.gz' else: glob = path.name path = path.parent input = Path(path).glob(glob) elif isinstance(input, list): pass else: raise ArgumentError("input should be either a list of a path with an optional glob specifier") shards = [str(x) for x in input] speaker_map = build_speaker_map(shards) def ds(shards, length): ds = wds.WebDataset(wds.ResampledShards(shards)).compose( wds.decode(), speaker_id_extractor(speaker_map), wds.select(lambda s: s['stoks.npy'].shape[-1] > 12), # select samples > .5s tokenizer('txt', 'ttoks', length=550), ar_padder('stoks.npy', 'stoks', length=750, pad_token=vq_codes-1), char_per_seconder('txt', 'stoks.npy', 'cps', stoks_per_second=25), wds.to_tuple('ttoks', 'speaker', 'cps', 'in_stoks', 'out_stoks'), wds.batched(64) ) ds.speakers = speaker_map ds.total_samples = length ds.stoks_len = 750 ds.stoks_codes = vq_codes ds.ttoks_len = 550 return ds.compose(wds.slice(length // 64)).with_epoch(length // 64).with_length(length // 64) return ( ds(shards[1:], samples), ds(shards[:1], val_samples), ) # %% ../nbs/5B. Text to semantic token modeling.ipynb 14 def rand(start, end): return random.random() * (end - start) + start @dataclasses.dataclass class Tunables: init_std :float = 1 embeddings_std :float = .01 embeddings_lr_scale: float = 5 embedding_projector_lr_scale: float = 2.5 output_mult :float = .35 query_mult :float = 1 encoder_depth_ratio :float = 0.25 eot_dropout_p :float = .5 cps_input: bool = True cps_bins: int = 32 lr0 :float = 1.5e-3 clip_gradient_norm :float = .2 weight_decay :float = 1e-1 warmup_steps :float = 4000 random :bool = False def __post_init__(self): # randomize the hyperparams if requested if self.random: self.init_std = 10**rand(-1,1) self.embeddings_std = 10**rand(-3,-.7) self.embeddings_lr_scale = rand(2,6) self.output_mult = rand(0.25,0.65) self.query_mult = 2**rand(-2,3) self.encoder_depth_ratio = 0.25 self.lr0 = rand(1,5)*1e-3 self.clip_gradient_norm = 10**rand(-3,0) self.warmup_steps = 100*(10**rand(1,1.85)) # %% ../nbs/5B. Text to semantic token modeling.ipynb 15 class EmbeddingProjector(nn.Linear): pass # %% ../nbs/5B. Text to semantic token modeling.ipynb 16 class Encoder(nn.Module): def __init__(self, depth=6, width=384, n_head=6, length=1500, codes=1024, emb_width=384, ffn_mult=4, pos_embs=None, tunables=Tunables()): super().__init__() self.emb_width = emb_width self.emb_factor = width != emb_width self.embedding = nn.Embedding(codes, emb_width) if self.emb_factor: self.emb_to_hidden = EmbeddingProjector(emb_width, width) if pos_embs is None: pos_embs = sinusoids(length, width) self.register_buffer("positional_embedding", pos_embs) self.layers = nn.Sequential(*[ ResidualAttentionBlock(width, n_head, qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), ffn_mult=ffn_mult) for _ in range(depth) ]) self.ln_post = LayerNorm(width) def forward(self, Stoks): xin = self.embedding(Stoks) if self.emb_factor: xin = self.emb_to_hidden(xin) assert xin.shape[1:] == self.positional_embedding.shape, "incorrect semantic token shape" xin = (xin + self.positional_embedding).to(xin.dtype) return self.ln_post(self.layers(xin)) # %% ../nbs/5B. Text to semantic token modeling.ipynb 17 class Decoder(nn.Module): def __init__(self, depth=6, stoks_width=384, width=384, n_head=6, length=1500, codes=1024, ffn_mult=4, pos_embs=None, tunables=Tunables()): super().__init__() self.length = length self.codes = codes self.width = width self.stoks_width = stoks_width self.emb_factor = width != stoks_width # embed semantic tokens self.embedding = nn.Embedding(codes, stoks_width) if self.emb_factor: self.emb_to_hidden = EmbeddingProjector(stoks_width, width) self.hidden_to_emb = EmbeddingProjector(width, stoks_width) if pos_embs is None: pos_embs = sinusoids(length, width) self.register_buffer("positional_embedding", pos_embs) self.layers = nn.ModuleList([ ResidualAttentionBlock(width, n_head, cross_attention=True, qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), ffn_mult=ffn_mult) for _ in range(depth) ]) self.ln_post = LayerNorm(width) def forward(self, Stoks, xenc, cps=None): Sembs = self.embedding(Stoks) if self.emb_factor: Sembs = self.emb_to_hidden(Sembs) xin = (Sembs + self.positional_embedding[:Sembs.shape[1]]).to(xenc.dtype) if cps is not None: xin = xin + cps x = xin for l in self.layers: x = l(x, xenc, causal=True) x = self.ln_post(x) if self.emb_factor: x = self.hidden_to_emb(x) logits = (x @ self.embedding.weight.to(x.dtype).T).float() return logits # %% ../nbs/5B. Text to semantic token modeling.ipynb 18 class TSARTransformer(nn.Module): def __init__(self, depth=6, n_head=6, head_width=64, ffn_mult=4, language='en', ttoks_len=200, ttoks_codes=50364, ttoks_width=None, stoks_len=1500, stoks_codes=1024, stoks_width=None, tunables=Tunables()): assert language == 'en', "only english is supported right now" super().__init__() store_attr("depth,n_head,head_width,ffn_mult,stoks_width,ttoks_width,ttoks_len,stoks_len,ttoks_codes,stoks_codes,language") width = n_head * head_width self.width = width self.base_width = 3 * head_width self.tunables = tunables if self.stoks_width is None: self.stoks_width = self.width if self.ttoks_width is None: self.ttoks_width = self.width if tunables.cps_input: self.cps_embeddings = nn.Embedding(tunables.cps_bins, self.width) else: self.cps_embeddings = None encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio) decoder_depth = depth * 2 - encoder_depth tformer_args = dict(width=width, n_head=n_head, ffn_mult=ffn_mult, tunables=tunables) self.encoder = Encoder(length=ttoks_len, codes=ttoks_codes, emb_width=self.ttoks_width, depth=encoder_depth, **tformer_args) self.decoder = Decoder(length=stoks_len, codes=stoks_codes, stoks_width=self.stoks_width, depth=decoder_depth, **tformer_args) self.tokenizer = None self.apply(self.init_transformer) def load_frozen_semantic_embeddings(self, vqmodel): with torch.no_grad(): self.decoder.embedding.weight[:] = vqmodel.rq.layers[0]._codebook.embed[0] self.decoder.embedding.lr_scale = 0 def setup(self, device): pass def init_transformer(self, m): if isinstance(m, LinearHead): m.no_weight_decay = True torch.nn.init.constant_(m.weight, 0) elif isinstance(m, QueryHead): m.lr_scale = 1/(m.weight.shape[1] / self.base_width) torch.nn.init.constant_(m.weight, 0) elif isinstance(m, nn.Embedding): m.no_weight_decay = True m.lr_scale = self.tunables.embeddings_lr_scale std = self.tunables.embeddings_std torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) elif isinstance(m, EmbeddingProjector): m.lr_scale = self.tunables.embedding_projector_lr_scale std = self.tunables.init_std torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) elif isinstance(m, nn.Linear): m.lr_scale = 1/(m.weight.shape[1] / self.base_width) std = self.tunables.init_std / m.weight.shape[1] torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) if m.bias is not None: torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std) elif isinstance(m, nn.LayerNorm): m.no_weight_decay = True torch.nn.init.constant_(m.bias, 0) torch.nn.init.constant_(m.weight, 1) def forward(self, Ttoks, speakers, cpss, in_stoks, out_stoks=None, loss=True): with record_function("encoder"): xenc = self.encoder(Ttoks.to(torch.long)) with record_function("decoder"): if self.cps_embeddings: cps_bin = (cpss / 20 * self.tunables.cps_bins).to(torch.long) cps_bin[cps_bin >= self.tunables.cps_bins] = self.tunables.cps_bins-1 cps_embs = self.cps_embeddings(cps_bin).unsqueeze(1) else: cps_embs = None logits = self.decoder(in_stoks, xenc, cps=cps_embs) * self.tunables.output_mult / (self.width / self.base_width) if loss is not None: with record_function("loss"): loss = F.cross_entropy(logits.transpose(-1,-2), out_stoks)#, reduction='none') return logits, loss # # inference # @classmethod def load_model(cls, repo_id="collabora/whisperspeech", filename="t2s_up_wds.model", local_filename=None): if not local_filename: local_filename = hf_hub_download(repo_id=repo_id, filename=filename) spec = torch.load(local_filename) model = cls(**spec['config'], tunables=Tunables(**spec['tunables'])) model.load_state_dict(spec['state_dict']) model.eval() return model def load_checkpoint(self, local_filename): spec = torch.load(local_filename, map_location='cpu') assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint' state_dict = {k.replace('model.', ''):v for k,v in spec['state_dict'].items()} self.load_state_dict(state_dict) return self def save_model(self, fname): torch.save(dict(config = self.__stored_args__, tunables = dataclasses.asdict(self.tunables), state_dict = self.state_dict()), fname) def ensure_tokenizer(self): assert not self.training if self.tokenizer is None: self.tokenizer = CharTokenizer() #whisper.tokenizer.get_tokenizer(multilingual=True) @property def device(self): return next(self.parameters()).device @torch.no_grad() def generate(self, txt, cps=15, N=None, T=0.7, top_k=None, show_progress_bar=True): self.ensure_tokenizer() N = N or self.stoks_len dev = self.device ttoks = torch.tensor(self.tokenizer.encode(txt), device=dev) ttoks = F.pad(ttoks, (0, self.ttoks_len - len(ttoks)), value=self.tokenizer.eot).unsqueeze(0) cpss = torch.tensor([cps], device=dev) toks = torch.zeros((1,N), dtype=torch.long, device=dev) toks[0,0] = self.stoks_codes-1 it = range(1,N) if show_progress_bar: it = progress_bar(it) for i in it: p, _ = self(ttoks, None, cpss, toks[:,:i], loss=None) last_p = p[0,-1] if top_k: last_p[last_p < torch.topk(last_p, top_k).values[-1,None]] = -torch.inf tok = torch.multinomial((last_p / float(T)).softmax(-1), 1) toks[0,i] = tok if toks[0,i] == self.stoks_codes-1: return toks[0,1:i] return toks[0,1:] @torch.no_grad() def generate_batch(self, txts, N=None, T=1.1, top_k=7, show_progress_bar=True): self.ensure_tokenizer() N = self.stoks_len dev = self.device ttoks = [] for txt in txts: ttoks_ = torch.tensor(self.tokenizer.encode(txt), device=dev) ttoks_ = F.pad(ttoks_, (0, self.ttoks_len - len(ttoks_)), value=self.tokenizer.eot).unsqueeze(0) ttoks.append(ttoks_) ttoks = torch.cat(ttoks, dim=0) toks = torch.zeros((len(ttoks),N), dtype=torch.long, device=dev) it = range(N) if show_progress_bar: it = progress_bar(it) for i in it: p, _ = self(ttoks, toks[:,:i], loss=None) last_p = p[:,-1] if top_k: last_p[last_p < torch.topk(last_p, top_k).values[:,-1,None]] = -torch.inf tok = torch.multinomial((last_p / float(T)).softmax(-1), 1) toks[:,i] = tok[:,0] if (toks[:,i] == self.stoks_codes-1).all(): return toks[:,:i] return toks # %% ../nbs/5B. Text to semantic token modeling.ipynb 19 def _make_model(size:str, tunables:Tunables=Tunables(), dataset=None, **kwargs): kwargs = dict(stoks_len = dataset.stoks_len, ttoks_len = dataset.ttoks_len, tunables=tunables, **kwargs) if 'stoks_codes' not in kwargs: kwargs['stoks_codes'] = dataset.stoks_codes if size == 'micro': return TSARTransformer(depth=2, n_head=3, ffn_mult=1, **kwargs) if size == 'tiny': return TSARTransformer(depth=4, n_head=6, **kwargs) if size == 'base': return TSARTransformer(depth=6, n_head=8, **kwargs) if size == 'small': return TSARTransformer(depth=12, n_head=16, **kwargs) def make_model(size:str, frozen_embeddings_model:str=None, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None): if frozen_embeddings_model: vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model) model = _make_model(size, tunables, dataset, stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1]) model.load_frozen_semantic_embeddings(vqmodel) else: model = _make_model(size, quantizers, tunables, dataset) return model