# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/2B. Whisper quantization (semantic token) model.ipynb. # %% auto 0 __all__ = ['RQBottleneckTransformer', 'make_model'] # %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 2 import io import sys import time import torch import torchaudio # %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 3 from pathlib import Path import json from fastprogress import progress_bar, master_bar import fastprogress import numpy as np import pylab as plt import pandas as pd import random import whisper from huggingface_hub import hf_hub_download from fastcore.basics import store_attr from torch import nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data.dataloader import DataLoader import webdataset as wds from . import utils from vector_quantize_pytorch import ResidualVQ from fastcore.script import * # %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 9 def merge_in(dataset_fun): """Merge a dataset into the current one returning samples with the union of keys. Pass in a function that takes a URL of a sample and returns a dataset for it (called everytime the URL changes). It requires (and validates) that both datasets have the same ordering of keys so you have to use it before any sample shuffling. Shard shuffling is ok. """ def merge_loop(main_samples): #print("new merge loop:", dataset_fun) merged_samples = None cur_url = None i = None for s in main_samples: url = s['__url__'] if url != cur_url: # this will open a new file when we get the first sample with a new __url__ merged_samples = iter(dataset_fun(url)) cur_url = url try: merge_s = next(merged_samples) except StopIteration: # if the original shard got repeated we won't observe a __url__ change # in this case restart the dataset from the beginning merged_samples = iter(dataset_fun(url)) merge_s = next(merged_samples) assert merge_s['__key__'] == s['__key__'], f"sample keys don't match: {merge_s['__key__']}, {s['__key__']} in file {s['__url__']}" news = {} news.update(merge_s) news.update(s) yield news return merge_loop # %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 10 def derived_dataset(kind, key='audio'): def deriver(url): url = str(Path(url).parent/(Path(url).name.replace(key, kind) + ".gz")) return wds.WebDataset( wds.SimpleShardList([url]) ).decode() return deriver # %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 17 def add_masks(samples): for s in samples: seconds = s['tend'] - s['tstart'] # a mask (downsampled to the Whisper encoder token rate of 50/s) is used # to teach the model the concept of padding # this let's us decode shorter sequences later mask = torch.zeros(30*16000//320, dtype=torch.bool) mask[:int(seconds * 16000) // 320] = 1 s['mask'] = mask yield s def tokenize_text(samples, ttoks_size=200, model="base.en", language="en"): multilingual = not model.endswith(".en") tokenizer = whisper.tokenizer.get_tokenizer(multilingual, language=language, task="transcribe") for s in samples: ttoks = tokenizer.encode(s['txt']) tokens = list(tokenizer.sot_sequence) + ttoks rpad = ttoks_size - len(tokens) s['in_ttoks'] = F.pad(torch.tensor(tokens), (0, rpad), value=tokenizer.eot) s['out_ttoks'] = F.pad(torch.tensor(tokens[1:] + [tokenizer.eot]), (0, rpad), value=-100) yield s # %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 22 def load_dataset( shard_spec:str, proc_dataset_path:Path, # processed VAD and txt files samples:int, # set the per-GPU sample count txt_label:str="base.en-txt", # the label of the files containing transcriptions model:str="base.en", key:str="flac", language:str=None, validation:bool=False, ): from . import wh_transcribe shards = utils.shard_glob(shard_spec) if not language and model.endswith('en'): language = 'en' assert language, "please provide the dataset language for multilang models" same_on_all_nodes = lambda urls: urls # will only be used for validation ds = wds.WebDataset(shards, resampled=not validation, nodesplitter=same_on_all_nodes).compose( wds.decode(wds.torch_audio), wds.select(lambda x: 'wav' in x or 'flac' in x or 'mp3' in x or 'ogg' in x), # skip samples without audio wds.rename(audio="flac;mp3;wav;ogg"), merge_in(derived_dataset(proc_dataset_path, 'vad', key=key)), wds.map_dict(**{"vad.npy":wh_transcribe.chunk_merger}), wh_transcribe.split_to_chunks, utils.resampler(16000, 'samples_16k'), merge_in(derived_dataset(proc_dataset_path, txt_label, key=key)), ) if 'librilight' in shards[0]: ds = ds.compose( # drop the first and last segment because they tend to be inaccurate # (the transcriptions don't have the "LibriVox" headers and "end of chapter" suffixes) wds.select(lambda x: x['i'] != 0 and x['i'] != x['imax']), ) ds = ds.compose( add_masks, lambda x: tokenize_text(x, model=model, language=language), wds.to_tuple('samples_16k', 'mask', 'in_ttoks', 'out_ttoks'), wds.batched(32), ) ds.total_samples = samples return ds # %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 28 from whisperspeech.train import * from whisperspeech.modules import * # %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 29 import dataclasses def rand(start, end): return random.random() * (end - start) + start def logrand(start, end): return 10**rand(math.log10(start), math.log10(end)) @dataclasses.dataclass class Tunables: init_std :float = 1.5 embeddings_std :float = 4.5e-2 embeddings_lr_scale: float = 1 output_mult :float = 1 query_mult :float = 2 rope :bool = True mask_embs :bool = True # force embeddings corresponding to the input audio padding to a constant value downsample_conv: bool = False downsample_mean: bool = True codebook_dim: int = 32 codebook_decay: float = 0.9 lr0 :float = .9e-3 clip_gradient_norm :float = 2 weight_decay :float = 1e-3 warmup_steps :float = 850 random :bool = False def __post_init__(self): # randomize the hyperparams if requested if self.random: self.init_std = logrand(1, 2) self.embeddings_std = logrand(3e-2,6e-2) self.embeddings_lr_scale = 2**rand(0,3) self.output_mult = 2**rand(-3,3) self.query_mult = logrand(1,8) self.codebook_dim = int(logrand(30,50)) self.codebook_decay = logrand(0.86,0.95) self.rope = True self.mask_embs = True self.downsample_mean = True self.lr0 = logrand(.8e-3,1e-3) self.clip_gradient_norm = 10**rand(-1,1) self.warmup_steps = logrand(700,1000) @staticmethod def upgrade(args): args = {k:v for k,v in args.items()} def old_default(name, value): if name not in args: args[name] = value old_default('output_mult', 1) old_default('query_mult', 1) old_default('rope', False) old_default('mask_embs', False) old_default('downsample_conv', False) old_default('downsample_mean', False) if 'encoder_depth_ratio' in args: del args['encoder_depth_ratio'] if 'vq_codes' in args: del args['vq_codes'] return args # %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 30 import math # %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 31 class RQBottleneckTransformer(nn.Module): def __init__(self, vq_codes=512, q_depth=12, depth=1, n_head=2, head_width=64, ffn_mult=4, codebook_dim=2, threshold_ema_dead_code=2, use_cosine_sim = False, kl_loss_mul=1, downsample=1, whisper_model_name='tiny.en', tunables=Tunables()): super().__init__() width = n_head * head_width store_attr("codebook_dim,vq_codes,q_depth,n_head,head_width,ffn_mult,depth,use_cosine_sim,downsample,whisper_model_name") self.width = width self.base_width = 3 * head_width self.vq_codes = vq_codes self.tunables = tunables self.stoks_len = 1500//downsample self.stoks_per_sec = self.stoks_len//30 qk_scale = self.tunables.query_mult * 8 / math.sqrt(head_width) self.kl_loss_mul = kl_loss_mul n_mlp = width * ffn_mult self.mlp = nn.Sequential( nn.Linear(width, n_mlp), nn.GELU(), nn.Linear(n_mlp, width) ) self.mlp_ln = LayerNorm(width) if tunables.downsample_conv: self.downsample_conv = nn.Conv1d(width, width, kernel_size=3, stride=downsample, padding=1) else: self.downsample_conv = None if tunables.mask_embs: vq_codes = vq_codes + 1 self.rq = ResidualVQ( dim = width, codebook_size = vq_codes, # codebook size decay = tunables.codebook_decay, # the exponential moving average decay, lower means the dictionary will change faster commitment_weight = 1., # the weight on the commitment loss threshold_ema_dead_code = threshold_ema_dead_code, use_cosine_sim = use_cosine_sim, codebook_dim = codebook_dim, num_quantizers= 1, ) self.ce_lossf = nn.CrossEntropyLoss(ignore_index=-100) self.kl_lossf = nn.KLDivLoss(reduction='batchmean') self.positional_embedding = nn.Embedding(1500, width) # FIXME: should be self.stoks_len self.out_blocks = nn.Sequential(*[ ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, rope=tunables.rope) for _ in range(depth) ]) self.ln_post = LayerNorm(width) self.whmodel = None self.apply(self.init_transformer) self.register_buffer('val_true', torch.zeros(1).cuda()) self.register_buffer('val_total', torch.zeros(1).cuda()) def setup(self, device): self.ensure_whisper(device) def init_transformer(self, m): if isinstance(m, LinearHead): m.no_weight_decay = True torch.nn.init.constant_(m.weight, 0) elif isinstance(m, QueryHead): m.lr_scale = 1/(m.weight.shape[1] / self.base_width) torch.nn.init.constant_(m.weight, 0) elif isinstance(m, nn.Embedding): m.no_weight_decay = True m.lr_scale = self.tunables.embeddings_lr_scale std = self.tunables.embeddings_std torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) elif isinstance(m, nn.Linear): m.lr_scale = 1/(m.weight.shape[1] / self.base_width) std = self.tunables.init_std / m.weight.shape[1] torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) if m.bias is not None: torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std) elif isinstance(m, nn.LayerNorm): m.no_weight_decay = True torch.nn.init.constant_(m.bias, 0) torch.nn.init.constant_(m.weight, 1) @property def device(self): return next(self.parameters()).device # # training # @torch.no_grad() def extract_teacher(self, samples, input_toks, output_toks): embs = self.whmodel[0].encoder(whisper.log_mel_spectrogram(samples)) teacher_logits = self.whmodel[0].decoder(input_toks, embs) # set teacher logits to 0 for padding positions so KLDivLoss ignores them teacher_logits[output_toks == -100] = 0 return embs, teacher_logits def downsample_embeddings(self, x): if self.downsample_conv is not None: return x[:,::self.downsample] + self.downsample_conv(x.transpose(-1,-2)).transpose(-2,-1) elif self.tunables.downsample_mean: bs,slen,depth = x.shape return x.reshape(bs,slen//self.downsample,self.downsample,depth).mean(-2) else: return x[:,::self.downsample] def forward(self, samples, mask, input_toks, output_toks): embs, teacher_logits = self.extract_teacher(samples, input_toks, output_toks) x = self.downsample_embeddings(embs) x = x + self.mlp(self.mlp_ln(x)) # VQ bottleneck quantized, self.indices, self.commit_loss = self.rq(x) self.commit_loss = self.commit_loss.mean() x = quantized.repeat_interleave(self.downsample, -2) project_out = getattr(self.rq, 'project_out', None) or self.rq.layers[0].project_out if self.tunables.mask_embs: x[~mask] = project_out(self.rq.layers[0]._codebook.embed[0,self.vq_codes]) positions = torch.arange(0, x.shape[-2], dtype=torch.long, device=x.device) x = x + self.positional_embedding(positions) x = self.ln_post(self.out_blocks(x)) logits = self.whmodel[0].decoder(input_toks, x) self.ce_loss = self.ce_lossf(logits.view(-1,logits.shape[-1]), output_toks.view(-1)) self.kl_loss = self.kl_lossf(F.log_softmax(logits, dim=-1), F.softmax(teacher_logits, dim=-1)) loss = self.ce_loss + self.kl_loss_mul * self.kl_loss + self.commit_loss if not self.training: valid_toks = output_toks != -100 self.val_true += (logits.argmax(-1)[valid_toks] == output_toks[valid_toks]).float().sum() self.val_total += valid_toks.float().sum() return x, loss def get_metrics(self): metrics = { 'acc_0': (self.val_true / self.val_total).item(), } self.val_true[:] = 0 self.val_total[:] = 0 return metrics # # inference # @classmethod def load_model(cls, ref="collabora/spear-tts-pytorch:whisper-vq-stoks-medium-en+pl.model", repo_id=None, filename=None, local_filename=None): if repo_id is None and filename is None and local_filename is None: if ":" in ref: repo_id, filename = ref.split(":", 1) else: local_filename = ref if not local_filename: local_filename = hf_hub_download(repo_id=repo_id, filename=filename) spec = torch.load(local_filename) vqmodel = cls(**spec['config'], tunables=Tunables(**Tunables.upgrade(spec.get('tunables', {})))) vqmodel.load_state_dict(spec['state_dict']) vqmodel.eval() return vqmodel def load_checkpoint(self, local_filename): spec = torch.load(local_filename, map_location='cpu') assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint' state_dict = {k.replace('model.', ''):v for k,v in spec['state_dict'].items()} self.load_state_dict(state_dict) return self def save_model(self, fname, store_parameters=True): torch.save(dict(config = self.__stored_args__, tunables = dataclasses.asdict(self.tunables), state_dict = self.state_dict() if store_parameters else None), fname) def ensure_whisper(self, device): # the list wrapper is a hack to make sure the whole of Whisper is not sucked into self.parameters() if self.whmodel is None: self.whmodel = [whisper.load_model(self.whisper_model_name, device=device)] self.decoding_options = whisper.DecodingOptions() multilingual = not self.whisper_model_name.endswith('.en') self.tokenizer = whisper.tokenizer.get_tokenizer(multilingual) def quantize(self, embs): x = self.downsample_embeddings(embs) x = x + self.mlp(self.mlp_ln(x)) _, stoks, _ = self.rq(x) if self.q_depth == 1: stoks = stoks.squeeze(-1) return stoks def dequantize(self, stoks): assert self.q_depth == 1 assert len(stoks.shape) == 1, "batch processing is not supported" if isinstance(stoks, np.ndarray): stoks = torch.tensor(stoks) # remove padding padding = torch.nonzero(stoks == self.vq_codes) if padding.any(): stoks = stoks[:padding[0,0]] stoks = F.pad(stoks, (0,self.stoks_len - stoks.shape[-1]), value=self.vq_codes if self.tunables.mask_embs else 0) x = self.rq.layers[0]._codebook.embed[0,stoks.to(torch.long).view(-1)] x = x.repeat_interleave(self.downsample, -2) project_out = getattr(self.rq, 'project_out', None) or self.rq.layers[0].project_out x = project_out(x).unsqueeze(0) positions = torch.arange(0, x.shape[-2], dtype=torch.long, device=x.device) x = x + self.positional_embedding(positions) return self.ln_post(self.out_blocks(x)) def encode_audio(self, audio): if isinstance(audio, str): x, sr = torchaudio.load(audio) x = torchaudio.transforms.Resample(sr, 16000)(x)[0] audio = x.unsqueeze(0) return self.encode_mel(whisper.log_mel_spectrogram(audio).to(self.device)) def encode_mel(self, mel): assert len(mel.shape) == 3, "invalid mel spectrogram shape, expect (batch,chn,time)" self.ensure_whisper(self.device) n = mel.shape[-1] if n > whisper.audio.N_FRAMES: padding = 0 padded = mel[:,:,:whisper.audio.N_FRAMES] else: padding = -n % whisper.audio.N_FRAMES padded = F.pad(mel, (0, padding), value=-1.5) embs = self.whmodel[0].encoder(padded)#.to(self.whmodel[0].device))#[:,:n//2] stoks = self.quantize(embs) if self.tunables.mask_embs: return stoks[:,:n//2//self.downsample] else: return stoks def decode_text(self, stoks, decoding_options=None): self.ensure_whisper(self.device) if decoding_options is None: decoding_options = self.decoding_options embs = self.dequantize(stoks).to(self.whmodel[0].device) return self.whmodel[0].decode(embs, decoding_options) # %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 33 def make_model(size:str, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None): if size == 'base.en-2d-4096c': model = RQBottleneckTransformer(codebook_dim=32, vq_codes=4096, q_depth=1, n_head=8, depth=1, downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True, whisper_model_name=size.split("-")[0], tunables=tunables) return model if size == 'base.en-2d-512c': model = RQBottleneckTransformer(codebook_dim=32, vq_codes=512, q_depth=1, n_head=8, depth=1, downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True, whisper_model_name=size.split("-")[0], tunables=tunables) return model if size == 'base.en-2d-512c-dim64': model = RQBottleneckTransformer(codebook_dim=64, vq_codes=512, q_depth=1, n_head=8, depth=1, downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True, whisper_model_name=size.split("-")[0], tunables=tunables) return model if size == 'base-2d-512c-dim64': model = RQBottleneckTransformer(codebook_dim=64, vq_codes=512, q_depth=1, n_head=8, depth=1, downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True, whisper_model_name=size.split("-")[0], tunables=tunables) return model if size == 'base-2d-1024c-dim64': model = RQBottleneckTransformer(codebook_dim=64, vq_codes=1024, q_depth=1, n_head=8, depth=1, downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True, whisper_model_name=size.split("-")[0], tunables=tunables) return model if size == 'medium-2d-512c-dim64': model = RQBottleneckTransformer(codebook_dim=64, vq_codes=512, q_depth=1, n_head=16, depth=1, downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True, whisper_model_name=size.split("-")[0], tunables=tunables) return model if size == 'medium-2d-1024c-dim64': model = RQBottleneckTransformer(codebook_dim=64, vq_codes=1024, q_depth=1, n_head=16, depth=1, downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True, whisper_model_name=size.split("-")[0], tunables=tunables) return model raise ArgumentError(f"invalid model size: {size}")