tonic
Laion WhisperSpeech Demo
33d9042
raw
history blame
No virus
21.6 kB
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/2B. Whisper quantization (semantic token) model.ipynb.
# %% auto 0
__all__ = ['RQBottleneckTransformer', 'make_model']
# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 2
import io
import sys
import time
import torch
import torchaudio
# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 3
from pathlib import Path
import json
from fastprogress import progress_bar, master_bar
import fastprogress
import numpy as np
import pylab as plt
import pandas as pd
import random
import whisper
from huggingface_hub import hf_hub_download
from fastcore.basics import store_attr
from torch import nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data.dataloader import DataLoader
import webdataset as wds
from . import utils
from vector_quantize_pytorch import ResidualVQ
from fastcore.script import *
# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 9
def merge_in(dataset_fun):
"""Merge a dataset into the current one returning samples with the union of keys. Pass in a function
that takes a URL of a sample and returns a dataset for it (called everytime the URL changes).
It requires (and validates) that both datasets have the same ordering of keys so you have
to use it before any sample shuffling. Shard shuffling is ok.
"""
def merge_loop(main_samples):
#print("new merge loop:", dataset_fun)
merged_samples = None
cur_url = None
i = None
for s in main_samples:
url = s['__url__']
if url != cur_url:
# this will open a new file when we get the first sample with a new __url__
merged_samples = iter(dataset_fun(url))
cur_url = url
try:
merge_s = next(merged_samples)
except StopIteration:
# if the original shard got repeated we won't observe a __url__ change
# in this case restart the dataset from the beginning
merged_samples = iter(dataset_fun(url))
merge_s = next(merged_samples)
assert merge_s['__key__'] == s['__key__'], f"sample keys don't match: {merge_s['__key__']}, {s['__key__']} in file {s['__url__']}"
news = {}
news.update(merge_s)
news.update(s)
yield news
return merge_loop
# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 10
def derived_dataset(kind, key='audio'):
def deriver(url):
url = str(Path(url).parent/(Path(url).name.replace(key, kind) + ".gz"))
return wds.WebDataset(
wds.SimpleShardList([url])
).decode()
return deriver
# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 17
def add_masks(samples):
for s in samples:
seconds = s['tend'] - s['tstart']
# a mask (downsampled to the Whisper encoder token rate of 50/s) is used
# to teach the model the concept of padding
# this let's us decode shorter sequences later
mask = torch.zeros(30*16000//320, dtype=torch.bool)
mask[:int(seconds * 16000) // 320] = 1
s['mask'] = mask
yield s
def tokenize_text(samples, ttoks_size=200, model="base.en", language="en"):
multilingual = not model.endswith(".en")
tokenizer = whisper.tokenizer.get_tokenizer(multilingual, language=language, task="transcribe")
for s in samples:
ttoks = tokenizer.encode(s['txt'])
tokens = list(tokenizer.sot_sequence) + ttoks
rpad = ttoks_size - len(tokens)
s['in_ttoks'] = F.pad(torch.tensor(tokens), (0, rpad), value=tokenizer.eot)
s['out_ttoks'] = F.pad(torch.tensor(tokens[1:] + [tokenizer.eot]), (0, rpad), value=-100)
yield s
# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 22
def load_dataset(
shard_spec:str,
proc_dataset_path:Path, # processed VAD and txt files
samples:int, # set the per-GPU sample count
txt_label:str="base.en-txt", # the label of the files containing transcriptions
model:str="base.en",
key:str="flac",
language:str=None,
validation:bool=False,
):
from . import wh_transcribe
shards = utils.shard_glob(shard_spec)
if not language and model.endswith('en'): language = 'en'
assert language, "please provide the dataset language for multilang models"
same_on_all_nodes = lambda urls: urls # will only be used for validation
ds = wds.WebDataset(shards, resampled=not validation, nodesplitter=same_on_all_nodes).compose(
wds.decode(wds.torch_audio),
wds.select(lambda x: 'wav' in x or 'flac' in x or 'mp3' in x or 'ogg' in x), # skip samples without audio
wds.rename(audio="flac;mp3;wav;ogg"),
merge_in(derived_dataset(proc_dataset_path, 'vad', key=key)),
wds.map_dict(**{"vad.npy":wh_transcribe.chunk_merger}),
wh_transcribe.split_to_chunks,
utils.resampler(16000, 'samples_16k'),
merge_in(derived_dataset(proc_dataset_path, txt_label, key=key)),
)
if 'librilight' in shards[0]:
ds = ds.compose(
# drop the first and last segment because they tend to be inaccurate
# (the transcriptions don't have the "LibriVox" headers and "end of chapter" suffixes)
wds.select(lambda x: x['i'] != 0 and x['i'] != x['imax']),
)
ds = ds.compose(
add_masks,
lambda x: tokenize_text(x, model=model, language=language),
wds.to_tuple('samples_16k', 'mask', 'in_ttoks', 'out_ttoks'),
wds.batched(32),
)
ds.total_samples = samples
return ds
# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 28
from whisperspeech.train import *
from whisperspeech.modules import *
# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 29
import dataclasses
def rand(start, end):
return random.random() * (end - start) + start
def logrand(start, end):
return 10**rand(math.log10(start), math.log10(end))
@dataclasses.dataclass
class Tunables:
init_std :float = 1.5
embeddings_std :float = 4.5e-2
embeddings_lr_scale: float = 1
output_mult :float = 1
query_mult :float = 2
rope :bool = True
mask_embs :bool = True # force embeddings corresponding to the input audio padding to a constant value
downsample_conv: bool = False
downsample_mean: bool = True
codebook_dim: int = 32
codebook_decay: float = 0.9
lr0 :float = .9e-3
clip_gradient_norm :float = 2
weight_decay :float = 1e-3
warmup_steps :float = 850
random :bool = False
def __post_init__(self):
# randomize the hyperparams if requested
if self.random:
self.init_std = logrand(1, 2)
self.embeddings_std = logrand(3e-2,6e-2)
self.embeddings_lr_scale = 2**rand(0,3)
self.output_mult = 2**rand(-3,3)
self.query_mult = logrand(1,8)
self.codebook_dim = int(logrand(30,50))
self.codebook_decay = logrand(0.86,0.95)
self.rope = True
self.mask_embs = True
self.downsample_mean = True
self.lr0 = logrand(.8e-3,1e-3)
self.clip_gradient_norm = 10**rand(-1,1)
self.warmup_steps = logrand(700,1000)
@staticmethod
def upgrade(args):
args = {k:v for k,v in args.items()}
def old_default(name, value):
if name not in args: args[name] = value
old_default('output_mult', 1)
old_default('query_mult', 1)
old_default('rope', False)
old_default('mask_embs', False)
old_default('downsample_conv', False)
old_default('downsample_mean', False)
if 'encoder_depth_ratio' in args: del args['encoder_depth_ratio']
if 'vq_codes' in args: del args['vq_codes']
return args
# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 30
import math
# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 31
class RQBottleneckTransformer(nn.Module):
def __init__(self, vq_codes=512, q_depth=12, depth=1, n_head=2, head_width=64, ffn_mult=4,
codebook_dim=2, threshold_ema_dead_code=2, use_cosine_sim = False, kl_loss_mul=1,
downsample=1,
whisper_model_name='tiny.en', tunables=Tunables()):
super().__init__()
width = n_head * head_width
store_attr("codebook_dim,vq_codes,q_depth,n_head,head_width,ffn_mult,depth,use_cosine_sim,downsample,whisper_model_name")
self.width = width
self.base_width = 3 * head_width
self.vq_codes = vq_codes
self.tunables = tunables
self.stoks_len = 1500//downsample
self.stoks_per_sec = self.stoks_len//30
qk_scale = self.tunables.query_mult * 8 / math.sqrt(head_width)
self.kl_loss_mul = kl_loss_mul
n_mlp = width * ffn_mult
self.mlp = nn.Sequential(
nn.Linear(width, n_mlp), nn.GELU(), nn.Linear(n_mlp, width)
)
self.mlp_ln = LayerNorm(width)
if tunables.downsample_conv:
self.downsample_conv = nn.Conv1d(width, width, kernel_size=3, stride=downsample, padding=1)
else:
self.downsample_conv = None
if tunables.mask_embs: vq_codes = vq_codes + 1
self.rq = ResidualVQ(
dim = width,
codebook_size = vq_codes, # codebook size
decay = tunables.codebook_decay, # the exponential moving average decay, lower means the dictionary will change faster
commitment_weight = 1., # the weight on the commitment loss
threshold_ema_dead_code = threshold_ema_dead_code,
use_cosine_sim = use_cosine_sim,
codebook_dim = codebook_dim,
num_quantizers= 1,
)
self.ce_lossf = nn.CrossEntropyLoss(ignore_index=-100)
self.kl_lossf = nn.KLDivLoss(reduction='batchmean')
self.positional_embedding = nn.Embedding(1500, width) # FIXME: should be self.stoks_len
self.out_blocks = nn.Sequential(*[
ResidualAttentionBlock(width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, rope=tunables.rope) for _ in range(depth)
])
self.ln_post = LayerNorm(width)
self.whmodel = None
self.apply(self.init_transformer)
self.register_buffer('val_true', torch.zeros(1).cuda())
self.register_buffer('val_total', torch.zeros(1).cuda())
def setup(self, device):
self.ensure_whisper(device)
def init_transformer(self, m):
if isinstance(m, LinearHead):
m.no_weight_decay = True
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, QueryHead):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, nn.Embedding):
m.no_weight_decay = True
m.lr_scale = self.tunables.embeddings_lr_scale
std = self.tunables.embeddings_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.Linear):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
std = self.tunables.init_std / m.weight.shape[1]
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
if m.bias is not None:
torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.LayerNorm):
m.no_weight_decay = True
torch.nn.init.constant_(m.bias, 0)
torch.nn.init.constant_(m.weight, 1)
@property
def device(self):
return next(self.parameters()).device
#
# training
#
@torch.no_grad()
def extract_teacher(self, samples, input_toks, output_toks):
embs = self.whmodel[0].encoder(whisper.log_mel_spectrogram(samples))
teacher_logits = self.whmodel[0].decoder(input_toks, embs)
# set teacher logits to 0 for padding positions so KLDivLoss ignores them
teacher_logits[output_toks == -100] = 0
return embs, teacher_logits
def downsample_embeddings(self, x):
if self.downsample_conv is not None:
return x[:,::self.downsample] + self.downsample_conv(x.transpose(-1,-2)).transpose(-2,-1)
elif self.tunables.downsample_mean:
bs,slen,depth = x.shape
return x.reshape(bs,slen//self.downsample,self.downsample,depth).mean(-2)
else:
return x[:,::self.downsample]
def forward(self, samples, mask, input_toks, output_toks):
embs, teacher_logits = self.extract_teacher(samples, input_toks, output_toks)
x = self.downsample_embeddings(embs)
x = x + self.mlp(self.mlp_ln(x))
# VQ bottleneck
quantized, self.indices, self.commit_loss = self.rq(x)
self.commit_loss = self.commit_loss.mean()
x = quantized.repeat_interleave(self.downsample, -2)
project_out = getattr(self.rq, 'project_out', None) or self.rq.layers[0].project_out
if self.tunables.mask_embs: x[~mask] = project_out(self.rq.layers[0]._codebook.embed[0,self.vq_codes])
positions = torch.arange(0, x.shape[-2], dtype=torch.long, device=x.device)
x = x + self.positional_embedding(positions)
x = self.ln_post(self.out_blocks(x))
logits = self.whmodel[0].decoder(input_toks, x)
self.ce_loss = self.ce_lossf(logits.view(-1,logits.shape[-1]), output_toks.view(-1))
self.kl_loss = self.kl_lossf(F.log_softmax(logits, dim=-1), F.softmax(teacher_logits, dim=-1))
loss = self.ce_loss + self.kl_loss_mul * self.kl_loss + self.commit_loss
if not self.training:
valid_toks = output_toks != -100
self.val_true += (logits.argmax(-1)[valid_toks] == output_toks[valid_toks]).float().sum()
self.val_total += valid_toks.float().sum()
return x, loss
def get_metrics(self):
metrics = {
'acc_0': (self.val_true / self.val_total).item(),
}
self.val_true[:] = 0
self.val_total[:] = 0
return metrics
#
# inference
#
@classmethod
def load_model(cls, ref="collabora/spear-tts-pytorch:whisper-vq-stoks-medium-en+pl.model",
repo_id=None, filename=None, local_filename=None):
if repo_id is None and filename is None and local_filename is None:
if ":" in ref:
repo_id, filename = ref.split(":", 1)
else:
local_filename = ref
if not local_filename:
local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
spec = torch.load(local_filename)
vqmodel = cls(**spec['config'], tunables=Tunables(**Tunables.upgrade(spec.get('tunables', {}))))
vqmodel.load_state_dict(spec['state_dict'])
vqmodel.eval()
return vqmodel
def load_checkpoint(self, local_filename):
spec = torch.load(local_filename, map_location='cpu')
assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint'
state_dict = {k.replace('model.', ''):v
for k,v in spec['state_dict'].items()}
self.load_state_dict(state_dict)
return self
def save_model(self, fname, store_parameters=True):
torch.save(dict(config = self.__stored_args__,
tunables = dataclasses.asdict(self.tunables),
state_dict = self.state_dict() if store_parameters else None), fname)
def ensure_whisper(self, device):
# the list wrapper is a hack to make sure the whole of Whisper is not sucked into self.parameters()
if self.whmodel is None: self.whmodel = [whisper.load_model(self.whisper_model_name, device=device)]
self.decoding_options = whisper.DecodingOptions()
multilingual = not self.whisper_model_name.endswith('.en')
self.tokenizer = whisper.tokenizer.get_tokenizer(multilingual)
def quantize(self, embs):
x = self.downsample_embeddings(embs)
x = x + self.mlp(self.mlp_ln(x))
_, stoks, _ = self.rq(x)
if self.q_depth == 1:
stoks = stoks.squeeze(-1)
return stoks
def dequantize(self, stoks):
assert self.q_depth == 1
assert len(stoks.shape) == 1, "batch processing is not supported"
if isinstance(stoks, np.ndarray): stoks = torch.tensor(stoks)
# remove padding
padding = torch.nonzero(stoks == self.vq_codes)
if padding.any(): stoks = stoks[:padding[0,0]]
stoks = F.pad(stoks, (0,self.stoks_len - stoks.shape[-1]), value=self.vq_codes if self.tunables.mask_embs else 0)
x = self.rq.layers[0]._codebook.embed[0,stoks.to(torch.long).view(-1)]
x = x.repeat_interleave(self.downsample, -2)
project_out = getattr(self.rq, 'project_out', None) or self.rq.layers[0].project_out
x = project_out(x).unsqueeze(0)
positions = torch.arange(0, x.shape[-2], dtype=torch.long, device=x.device)
x = x + self.positional_embedding(positions)
return self.ln_post(self.out_blocks(x))
def encode_audio(self, audio):
if isinstance(audio, str):
x, sr = torchaudio.load(audio)
x = torchaudio.transforms.Resample(sr, 16000)(x)[0]
audio = x.unsqueeze(0)
return self.encode_mel(whisper.log_mel_spectrogram(audio).to(self.device))
def encode_mel(self, mel):
assert len(mel.shape) == 3, "invalid mel spectrogram shape, expect (batch,chn,time)"
self.ensure_whisper(self.device)
n = mel.shape[-1]
if n > whisper.audio.N_FRAMES:
padding = 0
padded = mel[:,:,:whisper.audio.N_FRAMES]
else:
padding = -n % whisper.audio.N_FRAMES
padded = F.pad(mel, (0, padding), value=-1.5)
embs = self.whmodel[0].encoder(padded)#.to(self.whmodel[0].device))#[:,:n//2]
stoks = self.quantize(embs)
if self.tunables.mask_embs:
return stoks[:,:n//2//self.downsample]
else:
return stoks
def decode_text(self, stoks, decoding_options=None):
self.ensure_whisper(self.device)
if decoding_options is None: decoding_options = self.decoding_options
embs = self.dequantize(stoks).to(self.whmodel[0].device)
return self.whmodel[0].decode(embs, decoding_options)
# %% ../nbs/2B. Whisper quantization (semantic token) model.ipynb 33
def make_model(size:str, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None):
if size == 'base.en-2d-4096c':
model = RQBottleneckTransformer(codebook_dim=32, vq_codes=4096, q_depth=1, n_head=8, depth=1,
downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
whisper_model_name=size.split("-")[0], tunables=tunables)
return model
if size == 'base.en-2d-512c':
model = RQBottleneckTransformer(codebook_dim=32, vq_codes=512, q_depth=1, n_head=8, depth=1,
downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
whisper_model_name=size.split("-")[0], tunables=tunables)
return model
if size == 'base.en-2d-512c-dim64':
model = RQBottleneckTransformer(codebook_dim=64, vq_codes=512, q_depth=1, n_head=8, depth=1,
downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
whisper_model_name=size.split("-")[0], tunables=tunables)
return model
if size == 'base-2d-512c-dim64':
model = RQBottleneckTransformer(codebook_dim=64, vq_codes=512, q_depth=1, n_head=8, depth=1,
downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
whisper_model_name=size.split("-")[0], tunables=tunables)
return model
if size == 'base-2d-1024c-dim64':
model = RQBottleneckTransformer(codebook_dim=64, vq_codes=1024, q_depth=1, n_head=8, depth=1,
downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
whisper_model_name=size.split("-")[0], tunables=tunables)
return model
if size == 'medium-2d-512c-dim64':
model = RQBottleneckTransformer(codebook_dim=64, vq_codes=512, q_depth=1, n_head=16, depth=1,
downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
whisper_model_name=size.split("-")[0], tunables=tunables)
return model
if size == 'medium-2d-1024c-dim64':
model = RQBottleneckTransformer(codebook_dim=64, vq_codes=1024, q_depth=1, n_head=16, depth=1,
downsample=2, threshold_ema_dead_code=0, use_cosine_sim=True,
whisper_model_name=size.split("-")[0], tunables=tunables)
return model
raise ArgumentError(f"invalid model size: {size}")