first commit
Browse files- Dockerfile +28 -0
- README.md +0 -2
- api/__init__.py +0 -0
- api/core/app.py +70 -0
- api/core/controllers/text2image.py +51 -0
- api/core/controllers/text2speach.py +0 -0
- api/core/controllers/text2text.py +43 -0
- api/core/controllers/text2video.py +0 -0
- api/main.py +57 -0
- requirements.txt +29 -0
Dockerfile
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:11.7.1-cudnn8-runtime-ubuntu20.04
|
2 |
+
|
3 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
4 |
+
RUN apt update && \
|
5 |
+
apt install -y bash \
|
6 |
+
build-essential \
|
7 |
+
git \
|
8 |
+
git-lfs \
|
9 |
+
curl \
|
10 |
+
ca-certificates \
|
11 |
+
libsndfile1-dev \
|
12 |
+
libgl1 \
|
13 |
+
python3.8 \
|
14 |
+
python3-pip \
|
15 |
+
python3.8-venv && \
|
16 |
+
rm -rf /var/lib/apt/lists
|
17 |
+
WORKDIR /code
|
18 |
+
COPY ./requirements.txt /code/requirements.txt
|
19 |
+
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
|
20 |
+
python3 -m pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
21 |
+
RUN useradd -m -u 1000 user
|
22 |
+
USER user
|
23 |
+
ENV HOME=/home/user \
|
24 |
+
PATH=/home/user/.local/bin:$PATH
|
25 |
+
WORKDIR $HOME/server
|
26 |
+
COPY --chown=user . $HOME/server
|
27 |
+
|
28 |
+
CMD ["uvicorn", "api.main:api", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -6,5 +6,3 @@ colorTo: indigo
|
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
9 |
-
|
10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
|
|
|
api/__init__.py
ADDED
File without changes
|
api/core/app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class Demos:
|
2 |
+
def __init__(self):
|
3 |
+
from fastapi import FastAPI, HTTPException, Response
|
4 |
+
self.api = FastAPI
|
5 |
+
self.exception = HTTPException
|
6 |
+
self.api_response = Response
|
7 |
+
def validate_apikey(self,api_key)->bool:
|
8 |
+
__validation = True
|
9 |
+
return __validation
|
10 |
+
@staticmethod
|
11 |
+
def text_to_img(texto:str=None, model:str="PROMPTHERO")->bytes:
|
12 |
+
"""Genera un BITARRAY de la imagen con el texto dado.
|
13 |
+
|
14 |
+
args:
|
15 |
+
texto (str) : Texto para generar imagen
|
16 |
+
return:
|
17 |
+
_img (str) : Imagen en BITARRAY
|
18 |
+
"""
|
19 |
+
|
20 |
+
from api.core.controllers.text2image import Generador
|
21 |
+
_imagen = str()
|
22 |
+
if "RUNWAY" in model.upper():
|
23 |
+
_imagen = Generador.using_runway_sd_15(prompt=texto)
|
24 |
+
elif "STABILITY" in model.upper():
|
25 |
+
_imagen = Generador.using_stability_sd_21(prompt=texto)
|
26 |
+
elif "REALISTIC" in model.upper():
|
27 |
+
_imagen = Generador.using_realistic_v14(prompt=texto)
|
28 |
+
elif "PROMPTHERO" in model.upper():
|
29 |
+
_imagen = Generador.using_prompthero_openjourney(prompt=texto)
|
30 |
+
else:
|
31 |
+
_imagen = bytes("error", 'utf-8')
|
32 |
+
return _imagen
|
33 |
+
@staticmethod
|
34 |
+
def text_to_video(texto:str=None)->str:
|
35 |
+
"""Genera un BITARRAY del video con el texto dado.
|
36 |
+
|
37 |
+
args:
|
38 |
+
texto (str) : Texto para generar video
|
39 |
+
return:
|
40 |
+
_video (str) : Video en BITARRAY
|
41 |
+
"""
|
42 |
+
_video = str()
|
43 |
+
return _video
|
44 |
+
@staticmethod
|
45 |
+
def text_to_speach(texto:str=None)->str:
|
46 |
+
"""Genera un BITARRAY del audio con el texto dado.
|
47 |
+
|
48 |
+
args:
|
49 |
+
texto (str) : Texto para generar audio
|
50 |
+
return:
|
51 |
+
_speach (str) : Audio en BITARRAY
|
52 |
+
"""
|
53 |
+
_speach = str()
|
54 |
+
return _speach
|
55 |
+
@staticmethod
|
56 |
+
def image_to_image(task:str="MSLD", image:str=None, mask:str=None,**kwargs)->str:
|
57 |
+
"""Genera una imagen a partir de una imagen
|
58 |
+
|
59 |
+
args:
|
60 |
+
task (str) : Modelo a utilizar: MSLD, DEEP, SCRIBLE, etc..
|
61 |
+
image (str) : Input Image
|
62 |
+
mask (str) : Mask Image
|
63 |
+
**kwargs (str) : Argumentos adicionales: inference, strnght, guidance...
|
64 |
+
return:
|
65 |
+
_image (str) : Imagen en BITARRAY
|
66 |
+
"""
|
67 |
+
_image = str()
|
68 |
+
return _image
|
69 |
+
|
70 |
+
|
api/core/controllers/text2image.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import DiffusionPipeline as Pipe
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class Generador:
|
5 |
+
def img_to_bytes(image) -> bytes:
|
6 |
+
import io
|
7 |
+
_imgByteArr = io.BytesIO()
|
8 |
+
image.save(_imgByteArr, format="png")
|
9 |
+
return _imgByteArr.getvalue()
|
10 |
+
def using_runway_sd_15(prompt:str)->bytes:
|
11 |
+
try:
|
12 |
+
_generador = Pipe.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
13 |
+
_generador.to("cuda")
|
14 |
+
_imagen = _generador(prompt).images[0]
|
15 |
+
_response = bytes(Generador.img_to_bytes(image=_imagen))
|
16 |
+
except Exception as e:
|
17 |
+
_response = bytes(str(e), 'utf-8')
|
18 |
+
finally:
|
19 |
+
return _response
|
20 |
+
def using_stability_sd_21(prompt:str)->bytes:
|
21 |
+
try:
|
22 |
+
_generador = Pipe.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
|
23 |
+
_generador.to("cuda")
|
24 |
+
_imagen = _generador(prompt).images[0]
|
25 |
+
_response = bytes(Generador.img_to_bytes(image=_imagen))
|
26 |
+
except Exception as e:
|
27 |
+
_response = bytes(str(e), 'utf-8')
|
28 |
+
finally:
|
29 |
+
return _response
|
30 |
+
def using_realistic_v14(prompt:str)->bytes:
|
31 |
+
try:
|
32 |
+
_generador = Pipe.from_pretrained("SG161222/Realistic_Vision_V1.4", torch_dtype=torch.float16)
|
33 |
+
_generador.to("cuda")
|
34 |
+
_imagen = _generador(prompt).images[0]
|
35 |
+
_response = bytes(Generador.img_to_bytes(image=_imagen))
|
36 |
+
except Exception as e:
|
37 |
+
_response = bytes(str(e), 'utf-8')
|
38 |
+
finally:
|
39 |
+
return _response
|
40 |
+
def using_prompthero_openjourney(prompt:str)->bytes:
|
41 |
+
try:
|
42 |
+
_generador = Pipe.from_pretrained("prompthero/openjourney", torch_dtype=torch.float16)
|
43 |
+
_generador.to("cuda")
|
44 |
+
_imagen = _generador(prompt).images[0]
|
45 |
+
_response = bytes(Generador.img_to_bytes(image=_imagen))
|
46 |
+
except Exception as e:
|
47 |
+
print(e)
|
48 |
+
_response = bytes(str(e), 'utf-8')
|
49 |
+
finally:
|
50 |
+
return _response
|
51 |
+
|
api/core/controllers/text2speach.py
ADDED
File without changes
|
api/core/controllers/text2text.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline as Pipe
|
2 |
+
|
3 |
+
class Traductor:
|
4 |
+
def EN_ES(texto:str)->str:
|
5 |
+
try:
|
6 |
+
_traductor = Pipe("text2text-generation", model="Helsinki-NLP/opus-mt-en-es")
|
7 |
+
_traduccion = _traductor(texto)[0]
|
8 |
+
_response = _traduccion.get('generated_text')
|
9 |
+
except Exception as e:
|
10 |
+
_response = str(e)
|
11 |
+
finally:
|
12 |
+
return _response
|
13 |
+
|
14 |
+
def ES_EN(texto:str)->str:
|
15 |
+
try:
|
16 |
+
_traductor = Pipe("text2text-generation", model="Helsinki-NLP/opus-mt-es-en")
|
17 |
+
_traduccion = _traductor(texto)[0]
|
18 |
+
_response = _traduccion.get('generated_text')
|
19 |
+
except Exception as e:
|
20 |
+
_response = str(e)
|
21 |
+
finally:
|
22 |
+
return _response
|
23 |
+
|
24 |
+
def AR_ES(texto:str)->str:
|
25 |
+
try:
|
26 |
+
_traductor = Pipe("text2text-generation", model="Helsinki-NLP/opus-mt-ar-es")
|
27 |
+
_traduccion = _traductor(texto)[0]
|
28 |
+
_response = _traduccion.get('generated_text')
|
29 |
+
except Exception as e:
|
30 |
+
_response = str(e)
|
31 |
+
finally:
|
32 |
+
return _response
|
33 |
+
|
34 |
+
class Abstractor:
|
35 |
+
def resumen(texto:str)->str:
|
36 |
+
try:
|
37 |
+
_abstractor = Pipe("text2text-generation", model="facebook/bart-large-cnn")
|
38 |
+
_resumen = _abstractor(texto)[0]
|
39 |
+
_response = _resumen.get('generated_text')
|
40 |
+
except Exception as e:
|
41 |
+
_response = str(e)
|
42 |
+
finally:
|
43 |
+
return _response
|
api/core/controllers/text2video.py
ADDED
File without changes
|
api/main.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from api.core.app import Demos
|
2 |
+
__main = Demos()
|
3 |
+
api = __main.api()
|
4 |
+
|
5 |
+
@api.post("/texto_a_imagen/", status_code=201, responses = {201: {"content": {"image/png": {}}}} ,response_class=__main.api_response)
|
6 |
+
def get_text2img(data:dict):
|
7 |
+
__response=dict({"request_data":data})
|
8 |
+
try:
|
9 |
+
if data and 'texto' in data and 'modelo' in data:
|
10 |
+
__response['original']= data.get('texto')
|
11 |
+
__image = __main.text_to_img(texto=data.get('texto'),
|
12 |
+
model=data.get('modelo'))
|
13 |
+
else:
|
14 |
+
raise __main.exception(status_code = 401, datail=f"Datos mal formados:\n{data}")
|
15 |
+
except Exception as e:
|
16 |
+
print(e)
|
17 |
+
#To-do ->agregar mas información en el error fecha, usuario, reqs
|
18 |
+
raise __main.exception(status_code = 403, datail=str(e))
|
19 |
+
finally:
|
20 |
+
return __main.api_response(content=__image, media_type="image/png")
|
21 |
+
|
22 |
+
@api.post("/texto_a_video/", status_code=201)
|
23 |
+
def get_text2video(data:dict) -> dict:
|
24 |
+
__response=dict({"request_data":data})
|
25 |
+
try:
|
26 |
+
if data:
|
27 |
+
__response['original']= data.get('texto')
|
28 |
+
__response['video']= __main.text_to_video(texto=data.get('texto'))
|
29 |
+
else:
|
30 |
+
raise __main.exception(status_code = 401, datail=f"Datos mal formados:\n{data}")
|
31 |
+
except Exception as e:
|
32 |
+
print(e)
|
33 |
+
#To-do ->agregar mas información en el error fecha, usuario, reqs
|
34 |
+
raise __main.exception(status_code = 403, datail=e)
|
35 |
+
finally:
|
36 |
+
return __response
|
37 |
+
|
38 |
+
@api.post("/texto_a_audio/", status_code=201)
|
39 |
+
def get_text2speach(data:dict) -> dict:
|
40 |
+
__response=dict({"request_data":data})
|
41 |
+
try:
|
42 |
+
if data:
|
43 |
+
__response['original']= data.get('texto')
|
44 |
+
__response['audio']= __main.text_to_speach(texto=data.get('texto'))
|
45 |
+
else:
|
46 |
+
raise __main.exception(status_code = 401, datail=f"Datos mal formados:\n{data}")
|
47 |
+
except Exception as e:
|
48 |
+
print(e)
|
49 |
+
#To-do ->agregar mas información en el error fecha, usuario, reqs
|
50 |
+
raise __main.exception(status_code = 403, datail=e)
|
51 |
+
finally:
|
52 |
+
return __response
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
torchaudio
|
4 |
+
invisible_watermark
|
5 |
+
datasets
|
6 |
+
hf-doc-builder
|
7 |
+
huggingface-hub
|
8 |
+
Jinja2
|
9 |
+
librosa
|
10 |
+
numpy
|
11 |
+
scipy
|
12 |
+
tensorboard
|
13 |
+
omegaconf
|
14 |
+
pytorch-lightning
|
15 |
+
xformers
|
16 |
+
|
17 |
+
fastapi
|
18 |
+
pydantic
|
19 |
+
uvicorn
|
20 |
+
typing
|
21 |
+
requests
|
22 |
+
bs4
|
23 |
+
transformers
|
24 |
+
transformers[sentencepiece]
|
25 |
+
diffusers
|
26 |
+
diffusers[torch]
|
27 |
+
diffusers[flax]
|
28 |
+
accelerate
|
29 |
+
safetensors
|