Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed | |
from transformers import pipeline | |
import torch | |
import json | |
import pandas as pd | |
def load_tokenizer(model_ckpt): | |
return AutoTokenizer.from_pretrained(model_ckpt) | |
def load_model(model_ckpt): | |
model = AutoModelForCausalLM.from_pretrained(model_ckpt, low_cpu_mem_usage=True) | |
return model | |
def load_examples(): | |
with open("examples.json", "r") as f: | |
examples = json.load(f) | |
return examples | |
st.set_page_config(page_icon=':laptop:', layout="wide") | |
st.sidebar.header("Models") | |
models = ["CodeParrot", "OPT", "InCoder"] | |
selected_models = st.sidebar.multiselect('Select code generation models to compare:', | |
models, | |
default=["CodeParrot"]) | |
st.sidebar.header("Tasks") | |
tasks = [" ", "Model evaluation", "Pretraining dataset", "Model architecture", "Code generation"] | |
selected_task = st.sidebar.selectbox("Select a task:", tasks) | |
tokenizer1 = load_tokenizer("lvwerra/codeparrot") | |
model1 = load_model("lvwerra/codeparrot") | |
tokenizer2 = load_tokenizer("facebook/incoder-1B") | |
model2 = load_model("facebook/incoder-1B") | |
#tokenizer3 = load_tokenizer("facebook/opt-1.3b") | |
#model3 = load_model("facebook/opt-1.3b") | |
pipelines = {} | |
for element in models: | |
if element == "CodeParrot": | |
pipelines[element] = pipeline("text-generation", model=model1, tokenizer=tokenizer1) | |
elif element == "InCoder": | |
tokenizer = load_tokenizer("facebook/incoder-1B") | |
model = load_model("facebook/incoder-1B") | |
pipelines[element] = pipeline("text-generation", model=model2, tokenizer=tokenizer2) | |
#else: | |
# tokenizer = load_tokenizer("facebook/opt-1.3b") | |
# model = load_model("facebook/opt-1.3b") | |
# pipelines[element] = pipeline("text-generation", model=model3, tokenizer=tokenizer3) | |
examples = load_examples() | |
example_names = [example["name"] for example in examples] | |
name2id = dict([(name, i) for i, name in enumerate(example_names)]) | |
set_seed(42) | |
gen_kwargs = {} | |
if selected_task == " ": | |
st.title("Code Generation Models comparison") | |
with open("intro.txt", "r") as f: | |
intro = f.read() | |
st.markdown(intro) | |
elif selected_task == "Pretraining dataset": | |
st.title("Pretraining datasets π") | |
st.markdown("Preview of some code files from Github repositories") | |
df = pd.read_csv("preview-github-data.csv") | |
st.dataframe(df) | |
for model in selected_models: | |
with open(f"datasets/{model.lower()}.txt", "r") as f: | |
text = f.read() | |
st.markdown(f"### {model}:") | |
st.markdown(text) | |
elif selected_task == "Model architecture": | |
st.title("Model architecture π¨") | |
for model in selected_models: | |
with open(f"architectures/{model.lower()}.txt", "r") as f: | |
text = f.read() | |
st.markdown(f"## {model}:") | |
st.markdown(text) | |
elif selected_task == "Model evaluation": | |
st.title("Code models evaluation π") | |
with open("evaluation/intro.txt", "r") as f: | |
intro = f.read() | |
st.markdown(intro) | |
elif selected_task == "Code generation": | |
st.title("Code generation π»") | |
st.sidebar.header("Examples") | |
selected_example = st.sidebar.selectbox("Select one of the following examples:", example_names) | |
example_text = examples[name2id[selected_example]]["value"] | |
default_length = examples[name2id[selected_example]]["length"] | |
st.sidebar.header("Generation settings") | |
gen_kwargs["do_sample"] = st.sidebar.radio("Decoding strategy:", ["Greedy", "Sample"]) == "Sample" | |
gen_kwargs["max_new_tokens"] = st.sidebar.slider("Number of tokens to generate:", value=default_length, min_value=8, step=8, max_value=256) | |
if gen_kwargs["do_sample"]: | |
gen_kwargs["temperature"] = 0.2 | |
gen_kwargs["top_k"] = 0 | |
gen_kwargs["top_p"] = 0.95 | |
gen_prompt = st.text_area("Generate code with prompt:", value=example_text, height=220,).strip() | |
if st.button("Generate code!"): | |
with st.spinner("Generating code..."): | |
for model in selected_models: | |
if model != "OPT": | |
pipe = pipelines[model] | |
generated_text = pipe(gen_prompt, **gen_kwargs)[0]['generated_text'] | |
st.markdown(f"{model}:") | |
st.code(generated_text) | |