File size: 3,760 Bytes
c9e8e4a
3bce3fb
a16fa71
41d27ac
 
 
 
c9e8e4a
fa5e188
7c0d726
 
 
b6b5314
fa5e188
c9e8e4a
 
f4313df
c9e8e4a
 
 
7c0d726
41d27ac
7c0d726
 
 
 
 
 
 
f7b6a4b
7c0d726
 
5740d40
c5fafcd
b6b5314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c0d726
b6b5314
7c0d726
b6b5314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import json
import pandas as pd
import requests
from multiprocessing import Pool
from functools import partial
import streamlit as st


GITHUB_CODE = "https://huggingface.co./datasets/lvwerra/github-code"
INCODER_IMG = (
    "https://huggingface.co./datasets/loubnabnl/repo-images/raw/main/incoder.png"
)
MODELS = ["CodeParrot", "InCoder"]

@st.cache()
def load_examples():
    with open("utils/examples.json", "r") as f:
        examples = json.load(f)
    return examples


def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
    url = (
        f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/"
    )
    r = requests.post(
        url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
    )
    generated_text = r.json()["data"][0]
    return generated_text


st.set_page_config(page_icon=":laptop:", layout="wide")

# Introduction
st.title("Code Generation Models")
with open("utils/intro.txt", "r") as f:
    intro = f.read()
st.markdown(intro)

# Pretraining datasets
st.title("1 - Pretraining datasets πŸ“š")
st.markdown(
    f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):"
)
df = pd.read_csv("utils/data_preview.csv")
st.dataframe(df)
st.header("Model")
selected_model = st.selectbox(
    "Select a code generation model", MODELS, default=["CodeParrot"]
)
with open(f"datasets/{selected_model.lower()}.txt", "r") as f:
    text = f.read()
st.markdown(text)

# Model architecture
st.title("Model architecture")
st.markdow("Most code generation models use GPT style architectures trained on code. Some use encoder-decoder architectures such as AlphaCode.")
st.header("Model")
selected_model = st.selectbox(
    "Select a code generation model", MODELS, default=["CodeParrot"]
)
with open(f"architectures/{selected_model.lower()}.txt", "r") as f:
    text = f.read()
st.markdown(text)
if model == "InCoder":
    st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)

# Model evaluation
st.title("Code models evaluation πŸ“Š")
with open("evaluation/intro.txt", "r") as f:
    intro = f.read()
st.markdown(intro)

# Code generation
st.title("Code generation πŸ’»")
st.header("Models")
selected_models = st.sidebar.multiselect(
    "Select code generation models to compare", MODELS, default=["CodeParrot"]
)
st.header("Examples")
examples = load_examples()
example_names = [example["name"] for example in examples]
name2id = dict([(name, i) for i, name in enumerate(example_names)])
selected_example = st.selectbox(
    "Select one of the following examples or implement yours", example_names
)
example_text = examples[name2id[selected_example]]["value"]
default_length = examples[name2id[selected_example]]["length"]
st.header("Generation settings")
temperature = st.slider(
    "Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
)
max_new_tokens = st.slider(
    "Number of tokens to generate:",
    value=default_length,
    min_value=8,
    step=8,
    max_value=256,
)
seed = st.slider(
    "Random seed:", value=42, min_value=0, step=1, max_value=1000
)
gen_prompt = st.text_area(
    "Generate code with prompt:",
    value=example_text,
    height=220,
).strip()
if st.button("Generate code!"):
    with st.spinner("Generating code..."):
        # Create a multiprocessing Pool
        pool = Pool()
        generate_parallel = partial(
            generate_code,
            gen_prompt=gen_prompt,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            seed=seed,
        )
        output = pool.map(generate_parallel, selected_models)
        for i in range(len(output)):
            st.markdown(f"**{selected_models[i]}**")
            st.code(output[i])