File size: 1,028 Bytes
c9e8e4a
3bce3fb
a16fa71
41d27ac
 
 
 
c9e8e4a
fa5e188
7c0d726
 
 
b6b5314
fa5e188
c9e8e4a
 
f4313df
c9e8e4a
 
 
7c0d726
41d27ac
7c0d726
 
 
 
 
 
 
f7b6a4b
7c0d726
 
5740d40
c5fafcd
b6b5314
1d384f8
b6b5314
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import json
import pandas as pd
import requests
from multiprocessing import Pool
from functools import partial
import streamlit as st


GITHUB_CODE = "https://huggingface.co./datasets/lvwerra/github-code"
INCODER_IMG = (
    "https://huggingface.co./datasets/loubnabnl/repo-images/raw/main/incoder.png"
)
MODELS = ["CodeParrot", "InCoder"]

@st.cache()
def load_examples():
    with open("utils/examples.json", "r") as f:
        examples = json.load(f)
    return examples


def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
    url = (
        f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/"
    )
    r = requests.post(
        url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
    )
    generated_text = r.json()["data"][0]
    return generated_text


st.set_page_config(page_icon=":laptop:", layout="wide")

# Introduction
st.title("Code generation with 🤗")
with open("utils/intro.txt", "r") as f:
    intro = f.read()
st.markdown(intro)