import gradio as gr from sentence_transformers import SentenceTransformer # Load the pre-trained paraphrase-mpnet-base-v2 model model = SentenceTransformer('sentence-transformers/paraphrase-mpnet-base-v2') def get_embeddings(sentences): # Get embeddings for the input sentences embeddings = model.encode(sentences, convert_to_tensor=True) return embeddings.tolist() # Define the Gradio interface interface = gr.Interface( fn=get_embeddings, # Function to call inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component outputs=gr.JSON(), # Output component title="Sentence Embeddings with MPNet", # Interface title description="Enter sentences to get their embeddings with paraphrase-mpnet-base-v2." # Description ) # Launch the interface interface.launch()