Spaces:
Runtime error
Runtime error
import itertools | |
import math | |
from typing import Any, Callable | |
import lightning as L | |
import torch | |
import torch.nn.functional as F | |
import wandb | |
from lightning.pytorch.loggers import TensorBoardLogger, WandbLogger | |
from matplotlib import pyplot as plt | |
from torch import nn | |
from fish_speech.models.vqgan.modules.discriminator import Discriminator | |
from fish_speech.models.vqgan.modules.wavenet import WaveNet | |
from fish_speech.models.vqgan.utils import avg_with_mask, plot_mel, sequence_mask | |
class VQGAN(L.LightningModule): | |
def __init__( | |
self, | |
optimizer: Callable, | |
lr_scheduler: Callable, | |
encoder: WaveNet, | |
quantizer: nn.Module, | |
decoder: WaveNet, | |
discriminator: Discriminator, | |
vocoder: nn.Module, | |
encode_mel_transform: nn.Module, | |
gt_mel_transform: nn.Module, | |
weight_adv: float = 1.0, | |
weight_vq: float = 1.0, | |
weight_mel: float = 1.0, | |
sampling_rate: int = 44100, | |
freeze_encoder: bool = False, | |
): | |
super().__init__() | |
# Model parameters | |
self.optimizer_builder = optimizer | |
self.lr_scheduler_builder = lr_scheduler | |
# Modules | |
self.encoder = encoder | |
self.quantizer = quantizer | |
self.decoder = decoder | |
self.vocoder = vocoder | |
self.discriminator = discriminator | |
self.encode_mel_transform = encode_mel_transform | |
self.gt_mel_transform = gt_mel_transform | |
# A simple linear layer to project quality to condition channels | |
self.quality_projection = nn.Linear(1, 768) | |
# Freeze vocoder | |
for param in self.vocoder.parameters(): | |
param.requires_grad = False | |
# Loss weights | |
self.weight_adv = weight_adv | |
self.weight_vq = weight_vq | |
self.weight_mel = weight_mel | |
# Other parameters | |
self.sampling_rate = sampling_rate | |
# Disable strict loading | |
self.strict_loading = False | |
# If encoder is frozen | |
if freeze_encoder: | |
for param in self.encoder.parameters(): | |
param.requires_grad = False | |
for param in self.quantizer.parameters(): | |
param.requires_grad = False | |
self.automatic_optimization = False | |
def on_save_checkpoint(self, checkpoint): | |
# Do not save vocoder | |
state_dict = checkpoint["state_dict"] | |
for name in list(state_dict.keys()): | |
if "vocoder" in name: | |
state_dict.pop(name) | |
def configure_optimizers(self): | |
optimizer_generator = self.optimizer_builder( | |
itertools.chain( | |
self.encoder.parameters(), | |
self.quantizer.parameters(), | |
self.decoder.parameters(), | |
self.quality_projection.parameters(), | |
) | |
) | |
optimizer_discriminator = self.optimizer_builder( | |
self.discriminator.parameters() | |
) | |
lr_scheduler_generator = self.lr_scheduler_builder(optimizer_generator) | |
lr_scheduler_discriminator = self.lr_scheduler_builder(optimizer_discriminator) | |
return ( | |
{ | |
"optimizer": optimizer_generator, | |
"lr_scheduler": { | |
"scheduler": lr_scheduler_generator, | |
"interval": "step", | |
"name": "optimizer/generator", | |
}, | |
}, | |
{ | |
"optimizer": optimizer_discriminator, | |
"lr_scheduler": { | |
"scheduler": lr_scheduler_discriminator, | |
"interval": "step", | |
"name": "optimizer/discriminator", | |
}, | |
}, | |
) | |
def training_step(self, batch, batch_idx): | |
optim_g, optim_d = self.optimizers() | |
audios, audio_lengths = batch["audios"], batch["audio_lengths"] | |
audios = audios.float() | |
audios = audios[:, None, :] | |
with torch.no_grad(): | |
encoded_mels = self.encode_mel_transform(audios) | |
gt_mels = self.gt_mel_transform(audios) | |
quality = ((gt_mels.mean(-1) > -8).sum(-1) - 90) / 10 | |
quality = quality.unsqueeze(-1) | |
mel_lengths = audio_lengths // self.gt_mel_transform.hop_length | |
mel_masks = sequence_mask(mel_lengths, gt_mels.shape[2]) | |
mel_masks_float_conv = mel_masks[:, None, :].float() | |
gt_mels = gt_mels * mel_masks_float_conv | |
encoded_mels = encoded_mels * mel_masks_float_conv | |
# Encode | |
encoded_features = self.encoder(encoded_mels) * mel_masks_float_conv | |
# Quantize | |
vq_result = self.quantizer(encoded_features) | |
loss_vq = getattr("vq_result", "loss", 0.0) | |
vq_recon_features = vq_result.z * mel_masks_float_conv | |
vq_recon_features = ( | |
vq_recon_features + self.quality_projection(quality)[:, :, None] | |
) | |
# VQ Decode | |
gen_mel = ( | |
self.decoder( | |
torch.randn_like(vq_recon_features) * mel_masks_float_conv, | |
condition=vq_recon_features, | |
) | |
* mel_masks_float_conv | |
) | |
# Discriminator | |
real_logits = self.discriminator(gt_mels) | |
fake_logits = self.discriminator(gen_mel.detach()) | |
d_mask = F.interpolate( | |
mel_masks_float_conv, size=(real_logits.shape[2],), mode="nearest" | |
) | |
loss_real = avg_with_mask((real_logits - 1) ** 2, d_mask) | |
loss_fake = avg_with_mask(fake_logits**2, d_mask) | |
loss_d = loss_real + loss_fake | |
self.log( | |
"train/discriminator/loss", | |
loss_d, | |
on_step=True, | |
on_epoch=False, | |
prog_bar=True, | |
logger=True, | |
) | |
# Discriminator backward | |
optim_d.zero_grad() | |
self.manual_backward(loss_d) | |
self.clip_gradients( | |
optim_d, gradient_clip_val=1000.0, gradient_clip_algorithm="norm" | |
) | |
optim_d.step() | |
# Mel Loss, applying l1, using a weighted sum | |
mel_distance = ( | |
gen_mel - gt_mels | |
).abs() # * 0.5 + self.ssim(gen_mel, gt_mels) * 0.5 | |
loss_mel_low_freq = avg_with_mask(mel_distance[:, :40, :], mel_masks_float_conv) | |
loss_mel_mid_freq = avg_with_mask( | |
mel_distance[:, 40:70, :], mel_masks_float_conv | |
) | |
loss_mel_high_freq = avg_with_mask( | |
mel_distance[:, 70:, :], mel_masks_float_conv | |
) | |
loss_mel = ( | |
loss_mel_low_freq * 0.6 + loss_mel_mid_freq * 0.3 + loss_mel_high_freq * 0.1 | |
) | |
# Adversarial Loss | |
fake_logits = self.discriminator(gen_mel) | |
loss_adv = avg_with_mask((fake_logits - 1) ** 2, d_mask) | |
# Total loss | |
loss = ( | |
self.weight_vq * loss_vq | |
+ self.weight_mel * loss_mel | |
+ self.weight_adv * loss_adv | |
) | |
# Log losses | |
self.log( | |
"train/generator/loss", | |
loss, | |
on_step=True, | |
on_epoch=False, | |
prog_bar=True, | |
logger=True, | |
) | |
self.log( | |
"train/generator/loss_vq", | |
loss_vq, | |
on_step=True, | |
on_epoch=False, | |
prog_bar=False, | |
logger=True, | |
) | |
self.log( | |
"train/generator/loss_mel", | |
loss_mel, | |
on_step=True, | |
on_epoch=False, | |
prog_bar=False, | |
logger=True, | |
) | |
self.log( | |
"train/generator/loss_adv", | |
loss_adv, | |
on_step=True, | |
on_epoch=False, | |
prog_bar=False, | |
logger=True, | |
) | |
# Generator backward | |
optim_g.zero_grad() | |
self.manual_backward(loss) | |
self.clip_gradients( | |
optim_g, gradient_clip_val=1000.0, gradient_clip_algorithm="norm" | |
) | |
optim_g.step() | |
scheduler_g, scheduler_d = self.lr_schedulers() | |
scheduler_g.step() | |
scheduler_d.step() | |
def validation_step(self, batch: Any, batch_idx: int): | |
audios, audio_lengths = batch["audios"], batch["audio_lengths"] | |
audios = audios.float() | |
audios = audios[:, None, :] | |
encoded_mels = self.encode_mel_transform(audios) | |
gt_mels = self.gt_mel_transform(audios) | |
mel_lengths = audio_lengths // self.gt_mel_transform.hop_length | |
mel_masks = sequence_mask(mel_lengths, gt_mels.shape[2]) | |
mel_masks_float_conv = mel_masks[:, None, :].float() | |
gt_mels = gt_mels * mel_masks_float_conv | |
encoded_mels = encoded_mels * mel_masks_float_conv | |
# Encode | |
encoded_features = self.encoder(encoded_mels) * mel_masks_float_conv | |
# Quantize | |
vq_recon_features = self.quantizer(encoded_features).z * mel_masks_float_conv | |
vq_recon_features = ( | |
vq_recon_features | |
+ self.quality_projection( | |
torch.ones( | |
vq_recon_features.shape[0], 1, device=vq_recon_features.device | |
) | |
* 2 | |
)[:, :, None] | |
) | |
# VQ Decode | |
gen_aux_mels = ( | |
self.decoder( | |
torch.randn_like(vq_recon_features) * mel_masks_float_conv, | |
condition=vq_recon_features, | |
) | |
* mel_masks_float_conv | |
) | |
loss_mel = avg_with_mask((gen_aux_mels - gt_mels).abs(), mel_masks_float_conv) | |
self.log( | |
"val/loss_mel", | |
loss_mel, | |
on_step=False, | |
on_epoch=True, | |
prog_bar=False, | |
logger=True, | |
sync_dist=True, | |
) | |
recon_audios = self.vocoder(gt_mels) | |
gen_aux_audios = self.vocoder(gen_aux_mels) | |
# only log the first batch | |
if batch_idx != 0: | |
return | |
for idx, ( | |
gt_mel, | |
gen_aux_mel, | |
audio, | |
gen_aux_audio, | |
recon_audio, | |
audio_len, | |
) in enumerate( | |
zip( | |
gt_mels, | |
gen_aux_mels, | |
audios.cpu().float(), | |
gen_aux_audios.cpu().float(), | |
recon_audios.cpu().float(), | |
audio_lengths, | |
) | |
): | |
if idx > 4: | |
break | |
mel_len = audio_len // self.gt_mel_transform.hop_length | |
image_mels = plot_mel( | |
[ | |
gt_mel[:, :mel_len], | |
gen_aux_mel[:, :mel_len], | |
], | |
[ | |
"Ground-Truth", | |
"Auxiliary", | |
], | |
) | |
if isinstance(self.logger, WandbLogger): | |
self.logger.experiment.log( | |
{ | |
"reconstruction_mel": wandb.Image(image_mels, caption="mels"), | |
"wavs": [ | |
wandb.Audio( | |
audio[0, :audio_len], | |
sample_rate=self.sampling_rate, | |
caption="gt", | |
), | |
wandb.Audio( | |
gen_aux_audio[0, :audio_len], | |
sample_rate=self.sampling_rate, | |
caption="aux", | |
), | |
wandb.Audio( | |
recon_audio[0, :audio_len], | |
sample_rate=self.sampling_rate, | |
caption="recon", | |
), | |
], | |
}, | |
) | |
if isinstance(self.logger, TensorBoardLogger): | |
self.logger.experiment.add_figure( | |
f"sample-{idx}/mels", | |
image_mels, | |
global_step=self.global_step, | |
) | |
self.logger.experiment.add_audio( | |
f"sample-{idx}/wavs/gt", | |
audio[0, :audio_len], | |
self.global_step, | |
sample_rate=self.sampling_rate, | |
) | |
self.logger.experiment.add_audio( | |
f"sample-{idx}/wavs/gen", | |
gen_aux_audio[0, :audio_len], | |
self.global_step, | |
sample_rate=self.sampling_rate, | |
) | |
self.logger.experiment.add_audio( | |
f"sample-{idx}/wavs/recon", | |
recon_audio[0, :audio_len], | |
self.global_step, | |
sample_rate=self.sampling_rate, | |
) | |
plt.close(image_mels) | |
def encode(self, audios, audio_lengths): | |
audios = audios.float() | |
mels = self.encode_mel_transform(audios) | |
mel_lengths = audio_lengths // self.encode_mel_transform.hop_length | |
mel_masks = sequence_mask(mel_lengths, mels.shape[2]) | |
mel_masks_float_conv = mel_masks[:, None, :].float() | |
mels = mels * mel_masks_float_conv | |
# Encode | |
encoded_features = self.encoder(mels) * mel_masks_float_conv | |
feature_lengths = mel_lengths // math.prod(self.quantizer.downsample_factor) | |
return self.quantizer.encode(encoded_features), feature_lengths | |
def decode(self, indices, feature_lengths, return_audios=False): | |
factor = math.prod(self.quantizer.downsample_factor) | |
mel_masks = sequence_mask(feature_lengths * factor, indices.shape[2] * factor) | |
mel_masks_float_conv = mel_masks[:, None, :].float() | |
z = self.quantizer.decode(indices) * mel_masks_float_conv | |
z = ( | |
z | |
+ self.quality_projection(torch.ones(z.shape[0], 1, device=z.device) * 2)[ | |
:, :, None | |
] | |
) | |
gen_mel = ( | |
self.decoder( | |
torch.randn_like(z) * mel_masks_float_conv, | |
condition=z, | |
) | |
* mel_masks_float_conv | |
) | |
if return_audios: | |
return self.vocoder(gen_mel) | |
return gen_mel | |