Spaces:
Runtime error
Runtime error
File size: 12,578 Bytes
76d3fa1 0c22348 1880ac6 76d3fa1 c423c55 4f8bd37 c423c55 76d3fa1 1880ac6 fe95067 c423c55 0c22348 76d3fa1 0c22348 33a0edf c423c55 33a0edf 0c22348 76d3fa1 1880ac6 76d3fa1 2600030 76d3fa1 1880ac6 76d3fa1 1880ac6 76d3fa1 1880ac6 76d3fa1 0c22348 6774d89 0c22348 c3a4051 0c22348 c3a4051 0c22348 c3a4051 0c22348 33a0edf c3a4051 0c22348 33a0edf c3a4051 0c22348 c3a4051 0c22348 c3a4051 0c22348 4128c07 c3a4051 fe95067 c3a4051 0c22348 c3a4051 0c22348 c3a4051 0c22348 c3a4051 0c22348 33a0edf 76d3fa1 6774d89 33a0edf c423c55 33a0edf 0c22348 33a0edf c423c55 0c22348 f325d08 33a0edf c423c55 c3a4051 c423c55 c3a4051 c423c55 0c22348 76d3fa1 0c22348 76d3fa1 3ce130a 1880ac6 3ce130a 76d3fa1 c423c55 0c22348 76d3fa1 0c22348 4f8bd37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import os
from collections import defaultdict
import json
import gradio as gr
from utils import Environment, Agent, get_context_prompt, dialogue_history_prompt
from functools import cache
from sotopia_pi_generate import prepare_model, generate_action
with open("openai_api.key", "r") as f:
os.environ["OPENAI_API_KEY"] = f.read().strip()
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
DEFAULT_MODEL_SELECTION = "gpt-3.5-turbo"
TEMPERATURE = 0.7
TOP_P = 1
MAX_TOKENS = 1024
ENVIRONMENT_PROFILES = "profiles/environment_profiles.jsonl"
AGENT_PROFILES = "profiles/agent_profiles.jsonl"
RELATIONSHIP_PROFILES = "profiles/relationship_profiles.jsonl"
ACTION_TYPES = ['none', 'action', 'non-verbal communication', 'speak', 'leave']
@cache
def get_sotopia_profiles(env_file=ENVIRONMENT_PROFILES, agent_file=AGENT_PROFILES, relationship_file=RELATIONSHIP_PROFILES):
with open(env_file, 'r') as f:
data = [json.loads(line) for line in f.readlines()]
code_names_count = defaultdict(int)
environments = []
environment_dict = {}
for profile in sorted(data, key=lambda x: x['codename']):
env_obj = Environment(profile)
if profile['codename'] in code_names_count:
environments.append((
"{}_{:05d}".format(profile['codename'],
code_names_count[profile['codename']]
),
env_obj._id
))
else:
environments.append((profile['codename'], env_obj._id))
environment_dict[env_obj._id] = env_obj
code_names_count[profile['codename']] += 1
with open(agent_file, 'r') as f:
data = [json.loads(line) for line in f.readlines()]
agent_dict = {}
for profile in data:
agent_obj = Agent(profile)
agent_dict[agent_obj._id] = agent_obj
with open(relationship_file, 'r') as f:
data = [json.loads(line) for line in f.readlines()]
relationship_dict = defaultdict(lambda : defaultdict(list))
for profile in data:
relationship_dict[profile['relationship']][profile['agent1_id']].append(profile['agent2_id'])
relationship_dict[profile['relationship']][profile['agent2_id']].append(profile['agent1_id'])
return environments, environment_dict, agent_dict, relationship_dict
def introduction():
with gr.Column(scale=2):
gr.Image(
"images/sotopia.jpg", elem_id="banner-image", show_label=False
)
with gr.Column(scale=5):
gr.Markdown(
"""# Sotopia-Pi Demo
**Chat with [Sotopia-Pi](https://github.com/sotopia-lab/sotopia-pi), brainstorm ideas, discuss your holiday plans, and more!**
➡️️ **Intended Use**: this demo is intended to showcase an early finetuning of [sotopia-pi-mistral-7b-BC_SR](https://huggingface.co./cmu-lti/sotopia-pi-mistral-7b-BC_SR)/
⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words.
🗄️ **Disclaimer**: User prompts and generated replies from the model may be collected by TII solely for the purpose of enhancing and refining our models. TII will not store any personally identifiable information associated with your inputs. By using this demo, users implicitly agree to these terms.
"""
)
def create_user_agent_dropdown(environment_id):
_, environment_dict, agent_dict, relationship_dict = get_sotopia_profiles()
environment = environment_dict[environment_id]
user_agents_list = []
unique_agent_ids = set()
for x, _ in relationship_dict[environment.relationship].items():
unique_agent_ids.add(x)
for agent_id in unique_agent_ids:
user_agents_list.append((agent_dict[agent_id].name, agent_id))
return gr.Dropdown(choices=user_agents_list, value=user_agents_list[0][1] if user_agents_list else None, label="User Agent Selection")
def create_bot_agent_dropdown(environment_id, user_agent_id):
_, environment_dict, agent_dict, relationship_dict = get_sotopia_profiles()
environment, user_agent = environment_dict[environment_id], agent_dict[user_agent_id]
bot_agent_list = []
# import pdb; pdb.set_trace()
for neighbor_id in relationship_dict[environment.relationship][user_agent.agent_id]:
bot_agent_list.append((agent_dict[neighbor_id].name, neighbor_id))
return gr.Dropdown(choices=bot_agent_list, value=bot_agent_list[0][1] if bot_agent_list else None, label="Bot Agent Selection")
def create_environment_info(environment_dropdown):
_, environment_dict, _, _ = get_sotopia_profiles()
environment = environment_dict[environment_dropdown]
text = environment.scenario
return gr.Textbox(label="Scenario", lines=1, value=text)
def create_user_info(user_agent_dropdown):
_, _, agent_dict, _ = get_sotopia_profiles()
user_agent = agent_dict[user_agent_dropdown]
text = f"{user_agent.background} {user_agent.personality}"
return gr.Textbox(label="User Agent Profile", lines=4, value=text)
def create_bot_info(bot_agent_dropdown):
_, _, agent_dict, _ = get_sotopia_profiles()
# import pdb; pdb.set_trace()
bot_agent = agent_dict[bot_agent_dropdown]
text = f"{bot_agent.background} {bot_agent.personality}"
return gr.Textbox(label="Bot Agent Profile", lines=4, value=text)
def create_user_goal(environment_dropdown):
_, environment_dict, _, _ = get_sotopia_profiles()
text = environment_dict[environment_dropdown].agent_goals[0]
return gr.Textbox(label="User Agent Goal", lines=4, value=text)
def create_bot_goal(environment_dropdown):
_, environment_dict, _, _ = get_sotopia_profiles()
text = environment_dict[environment_dropdown].agent_goals[1]
return gr.Textbox(label="Bot Agent Goal", lines=4, value=text)
def sotopia_info_accordion(accordion_visible=True):
environments, _, _, _ = get_sotopia_profiles()
with gr.Accordion("Environment Configuration", open=accordion_visible):
with gr.Row():
environment_dropdown = gr.Dropdown(
choices=environments,
label="Scenario Selection",
value=environments[0][1] if environments else None,
interactive=True,
)
model_name_dropdown = gr.Dropdown(
choices=["cmu-lti/sotopia-pi-mistral-7b-BC_SR", "cmu-lti/sotopia-pi-mistral-7b-BC_SR_4bit", "mistralai/Mistral-7B-Instruct-v0.1", "gpt-3.5-turbo", "gpt-4-turbo"],
value=DEFAULT_MODEL_SELECTION,
interactive=True,
label="Model Selection"
)
scenario_info_display = create_environment_info(environment_dropdown.value)
with gr.Row():
bot_goal_display = create_bot_goal(environment_dropdown.value)
user_goal_display = create_user_goal(environment_dropdown.value)
with gr.Row():
user_agent_dropdown = create_user_agent_dropdown(environment_dropdown.value)
bot_agent_dropdown = create_bot_agent_dropdown(environment_dropdown.value, user_agent_dropdown.value)
with gr.Row():
user_agent_info_display = create_user_info(user_agent_dropdown.value)
bot_agent_info_display = create_bot_info(bot_agent_dropdown.value)
# Update user dropdown when scenario changes
environment_dropdown.change(fn=create_user_agent_dropdown, inputs=[environment_dropdown], outputs=[user_agent_dropdown])
# Update bot dropdown when user or scenario changes
user_agent_dropdown.change(fn=create_bot_agent_dropdown, inputs=[environment_dropdown, user_agent_dropdown], outputs=[bot_agent_dropdown])
# Update scenario information when scenario changes
environment_dropdown.change(fn=create_environment_info, inputs=[environment_dropdown], outputs=[scenario_info_display])
# Update user agent profile when user changes
user_agent_dropdown.change(fn=create_user_info, inputs=[user_agent_dropdown], outputs=[user_agent_info_display])
# Update bot agent profile when bot changes
bot_agent_dropdown.change(fn=create_bot_info, inputs=[bot_agent_dropdown], outputs=[bot_agent_info_display])
# Update user goal when scenario changes
environment_dropdown.change(fn=create_user_goal, inputs=[environment_dropdown], outputs=[user_goal_display])
# Update bot goal when scenario changes
environment_dropdown.change(fn=create_bot_goal, inputs=[environment_dropdown], outputs=[bot_goal_display])
return model_name_dropdown, environment_dropdown, user_agent_dropdown, bot_agent_dropdown
def instructions_accordion(instructions, according_visible=False):
with gr.Accordion("Instructions", open=False, visible=according_visible):
instructions = gr.Textbox(
lines=10,
value=instructions,
interactive=False,
placeholder="Instructions",
show_label=False,
max_lines=10,
visible=False,
)
return instructions
def chat_tab():
# history are input output pairs
_, environment_dict, agent_dict, _ = get_sotopia_profiles()
def run_chat(
message,
history,
environment_selection,
user_agent_dropdown,
bot_agent_dropdown,
model_selection:str
):
environment = environment_dict[environment_selection]
user_agent = agent_dict[user_agent_dropdown]
bot_agent = agent_dict[bot_agent_dropdown]
# import pdb; pdb.set_trace()
context = get_context_prompt(bot_agent, user_agent, environment)
dialogue_history, next_turn_idx = dialogue_history_prompt(message, history, user_agent, bot_agent)
prompt_history = f"{context}\n\n{dialogue_history}"
agent_action = generate_action(model_selection, prompt_history, next_turn_idx, ACTION_TYPES, bot_agent.name, TEMPERATURE)
# import pdb; pdb.set_trace()
return agent_action.to_natural_language()
with gr.Column():
with gr.Row():
model_name_dropdown, scenario_dropdown, user_agent_dropdown, bot_agent_dropdown = sotopia_info_accordion()
with gr.Column():
with gr.Blocks():
gr.ChatInterface(
fn=run_chat,
chatbot=gr.Chatbot(
height=620,
render=False,
show_label=False,
rtl=False,
avatar_images=(
"images/profile1.jpg",
"images/profile2.jpg",
),
),
textbox=gr.Textbox(
placeholder="Write your message here...",
render=False,
scale=7,
rtl=False,
),
additional_inputs=[
scenario_dropdown,
user_agent_dropdown,
bot_agent_dropdown,
model_name_dropdown,
],
submit_btn="Send",
stop_btn="Stop",
retry_btn="🔄 Retry",
undo_btn="↩️ Delete",
clear_btn="🗑️ Clear",
)
def main():
with gr.Blocks(
css="""#chat_container {height: 820px; width: 1000px; margin-left: auto; margin-right: auto;}
#chatbot {height: 600px; overflow: auto;}
#create_container {height: 750px; margin-left: 0px; margin-right: 0px;}
#tokenizer_renderer span {white-space: pre-wrap}
"""
) as demo:
with gr.Row():
introduction()
with gr.Row():
chat_tab()
return demo
def start_demo():
demo = main()
if DEPLOYED:
demo.queue(api_open=False).launch(show_api=False)
else:
demo.queue()
demo.launch(share=False, server_name="0.0.0.0")
if __name__ == "__main__":
get_sotopia_profiles()
# prepare_model(DEFAULT_MODEL_SELECTION)
start_demo() |