import gradio as gr import torch from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline import os from numpy import exp import pandas as pd from PIL import Image import urllib.request import uuid uid = uuid.uuid4() # Reordered models as requested models = [ "umm-maybe/AI-image-detector", "Organika/sdxl-detector", "cmckinle/sdxl-flux-detector", ] pipe0 = pipeline("image-classification", f"{models[0]}") pipe1 = pipeline("image-classification", f"{models[1]}") pipe2 = pipeline("image-classification", f"{models[2]}") fin_sum = [] def softmax(vector): e = exp(vector - vector.max()) # for numerical stability return e / e.sum() def image_classifier0(image): labels = ["AI", "Real"] outputs = pipe0(image) results = {} for idx, result in enumerate(outputs): results[labels[idx]] = float(outputs[idx]['score']) # Convert to float fin_sum.append(results) return results def image_classifier1(image): labels = ["AI", "Real"] outputs = pipe1(image) results = {} for idx, result in enumerate(outputs): results[labels[idx]] = float(outputs[idx]['score']) # Convert to float fin_sum.append(results) return results def image_classifier2(image): labels = ["AI", "Real"] outputs = pipe2(image) results = {} for idx, result in enumerate(outputs): results[labels[idx]] = float(outputs[idx]['score']) # Convert to float fin_sum.append(results) return results def aiornot0(image): labels = ["AI", "Real"] mod = models[0] feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod) model0 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor0(image, return_tensors="pt") with torch.no_grad(): outputs = model0(**input) logits = outputs.logits probability = softmax(logits) # Apply softmax on logits px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Probabilities:
Real: {float(px[1][0])}
AI: {float(px[0][0])}""" results = { "Real": float(px[1][0]), "AI": float(px[0][0]) } fin_sum.append(results) return gr.HTML.update(html_out), results def aiornot1(image): labels = ["AI", "Real"] mod = models[1] feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod) model1 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor1(image, return_tensors="pt") with torch.no_grad(): outputs = model1(**input) logits = outputs.logits probability = softmax(logits) # Apply softmax on logits px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Probabilities:
Real: {float(px[1][0])}
AI: {float(px[0][0])}""" results = { "Real": float(px[1][0]), "AI": float(px[0][0]) } fin_sum.append(results) return gr.HTML.update(html_out), results def aiornot2(image): labels = ["AI", "Real"] mod = models[2] feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod) model2 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor2(image, return_tensors="pt") with torch.no_grad(): outputs = model2(**input) logits = outputs.logits probability = softmax(logits) # Apply softmax on logits px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Probabilities:
Real: {float(px[1][0])}
AI: {float(px[0][0])}""" results = { "Real": float(px[1][0]), "AI": float(px[0][0]) } fin_sum.append(results) return gr.HTML.update(html_out), results def load_url(url): try: urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png") image = Image.open(f"{uid}tmp_im.png") mes = "Image Loaded" except Exception as e: image = None mes = f"Image not Found
Error: {e}" return image, mes def tot_prob(): try: fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum) fin_sub = 1 - fin_out out = { "Real": f"{fin_out}", "AI": f"{fin_sub}" } return out except Exception as e: print(e) return None def fin_clear(): fin_sum.clear() return None def upd(image): rand_im = uuid.uuid4() image.save(f"{rand_im}-vid_tmp_proc.png") out = Image.open(f"{rand_im}-vid_tmp_proc.png") return out with gr.Blocks() as app: gr.Markdown("""

AI Image Detector

(Test Demo - accuracy varies by model)""") with gr.Column(): inp = gr.Image(type='pil') in_url = gr.Textbox(label="Image URL") with gr.Row(): load_btn = gr.Button("Load URL") btn = gr.Button("Detect AI") mes = gr.HTML("""""") with gr.Group(): with gr.Row(): fin = gr.Label(label="Final Probability", visible=False) with gr.Row(): # Updated model names with gr.Box(): lab0 = gr.HTML(f"""Testing on Original Model: {models[0]}""") nun0 = gr.HTML("""""") with gr.Box(): lab1 = gr.HTML(f"""Testing on SDXL Fine Tuned Model: {models[1]}""") nun1 = gr.HTML("""""") with gr.Box(): lab2 = gr.HTML(f"""Testing on SDXL and Flux Fine Tuned Model: {models[2]}""") nun2 = gr.HTML("""""") with gr.Row(): with gr.Box(): n_out0 = gr.Label(label="Output") outp0 = gr.HTML("""""") with gr.Box(): n_out1 = gr.Label(label="Output") outp1 = gr.HTML("""""") with gr.Box(): n_out2 = gr.Label(label="Output") outp2 = gr.HTML("""""") btn.click(fin_clear, None, fin, show_progress=False) load_btn.click(load_url, in_url, [inp, mes]) btn.click(aiornot0, [inp], [outp0, n_out0]).then(tot_prob, None, fin, show_progress=False) btn.click(aiornot1, [inp], [outp1, n_out1]).then(tot_prob, None, fin, show_progress=False) btn.click(aiornot2, [inp], [outp2, n_out2]).then(tot_prob, None, fin, show_progress=False) btn.click(image_classifier0, [inp], [n_out0]).then(tot_prob, None, fin, show_progress=False) btn.click(image_classifier1, [inp], [n_out1]).then(tot_prob, None, fin, show_progress=False) btn.click(image_classifier2, [inp], [n_out2]).then(tot_prob, None, fin, show_progress=False) app.launch(show_api=False, max_threads=24)