import gradio as gr import torch from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline from numpy import exp def softmax(vector): e = exp(vector) return e / e.sum() models=[ "Nahrawy/AIorNot", "arnolfokam/ai-generated-image-detector", "umm-maybe/AI-image-detector", ] def aiornot0(image): labels = ["Real", "AI"] mod=models[0] feature_extractor = AutoFeatureExtractor.from_pretrained(mod) model = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor(image, return_tensors="pt") with torch.no_grad(): outputs = model(**input) print (outputs) logits = outputs.logits print (logits) probability = softmax(logits, axis=-1) print(probability) prediction = logits.argmax(-1).item() label = labels[prediction] return label def aiornot1(image): labels = ["Real", "AI"] mod=models[1] feature_extractor = AutoFeatureExtractor.from_pretrained(mod) model = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor(image, return_tensors="pt") with torch.no_grad(): outputs = model(**input) print (outputs) logits = outputs.logits print (logits) prediction = logits.argmax(-1).item() label = labels[prediction] return label def aiornot2(image): labels = ["Real", "AI"] mod=models[2] feature_extractor = AutoFeatureExtractor.from_pretrained(mod) model = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor(image, return_tensors="pt") with torch.no_grad(): outputs = model(**input) print (outputs) logits = outputs.logits print (logits) prediction = logits.argmax(-1).item() label = labels[prediction] return label with gr.Blocks() as app: with gr.Row(): with gr.Column(): inp = gr.Image() mod_choose=gr.Number(value=0) btn = gr.Button() with gr.Column(): outp0 = gr.Textbox() outp1 = gr.Textbox() outp2 = gr.Textbox() btn.click(aiornot0,[inp],outp0) btn.click(aiornot1,[inp],outp1) btn.click(aiornot2,[inp],outp2) app.launch()