cmckinle commited on
Commit
bda908c
1 Parent(s): 977f529

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -205
app.py CHANGED
@@ -1,257 +1,101 @@
1
  import gradio as gr
2
  import torch
3
- from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
4
- #from transformers import pipeline
5
  import os
6
  from numpy import exp
7
- import pandas as pd
8
  from PIL import Image
9
  import urllib.request
10
  import uuid
11
- uid=uuid.uuid4()
12
 
13
- models=[
 
 
14
  "cmckinle/sdxl-flux-detector",
15
  "umm-maybe/AI-image-detector",
16
  "Organika/sdxl-detector",
17
- #"arnolfokam/ai-generated-image-detector",
18
  ]
19
 
20
- pipe0 = pipeline("image-classification", f"{models[0]}")
21
- pipe1 = pipeline("image-classification", f"{models[1]}")
22
- pipe2 = pipeline("image-classification", f"{models[2]}")
23
-
24
-
25
- fin_sum=[]
26
- def image_classifier0(image):
27
- labels = ["AI","Real"]
28
- outputs = pipe0(image)
29
- results = {}
30
- result_test={}
31
- for idx,result in enumerate(outputs):
32
- results[labels[idx]] = outputs[idx]['score']
33
- #print (result_test)
34
- #for result in outputs:
35
- # results[result['label']] = result['score']
36
- #print (results)
37
- fin_sum.append(results)
38
- return results
39
- def image_classifier1(image):
40
- labels = ["AI","Real"]
41
- outputs = pipe1(image)
42
- results = {}
43
- result_test={}
44
- for idx,result in enumerate(outputs):
45
- results[labels[idx]] = outputs[idx]['score']
46
- #print (result_test)
47
- #for result in outputs:
48
- # results[result['label']] = result['score']
49
- #print (results)
50
- fin_sum.append(results)
51
- return results
52
- def image_classifier2(image):
53
- labels = ["AI","Real"]
54
- outputs = pipe2(image)
55
- results = {}
56
- result_test={}
57
- for idx,result in enumerate(outputs):
58
- results[labels[idx]] = outputs[idx]['score']
59
- #print (result_test)
60
- #for result in outputs:
61
- # results[result['label']] = result['score']
62
- #print (results)
63
- fin_sum.append(results)
64
- return results
65
 
66
  def softmax(vector):
67
- e = exp(vector)
68
- return e / e.sum()
69
-
70
-
71
 
72
- def aiornot0(image):
73
  labels = ["AI", "Real"]
74
- mod=models[0]
75
- feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
76
- model0 = AutoModelForImageClassification.from_pretrained(mod)
77
- input = feature_extractor0(image, return_tensors="pt")
78
- with torch.no_grad():
79
- outputs = model0(**input)
80
- logits = outputs.logits
81
- probability = softmax(logits)
82
- px = pd.DataFrame(probability.numpy())
83
- prediction = logits.argmax(-1).item()
84
- label = labels[prediction]
85
- html_out = f"""
86
- <h1>This image is likely: {label}</h1><br><h3>
87
-
88
- Probabilites:<br>
89
- Real: {px[1][0]}<br>
90
- AI: {px[0][0]}"""
91
- results = {}
92
- for idx,result in enumerate(px):
93
- results[labels[idx]] = px[idx][0]
94
- #results[labels['label']] = result['score']
95
- fin_sum.append(results)
96
- return gr.HTML.update(html_out),results
97
- def aiornot1(image):
98
- labels = ["AI", "Real"]
99
- mod=models[1]
100
- feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
101
- model1 = AutoModelForImageClassification.from_pretrained(mod)
102
- input = feature_extractor1(image, return_tensors="pt")
103
  with torch.no_grad():
104
- outputs = model1(**input)
105
  logits = outputs.logits
106
  probability = softmax(logits)
107
  px = pd.DataFrame(probability.numpy())
 
108
  prediction = logits.argmax(-1).item()
109
  label = labels[prediction]
 
110
  html_out = f"""
111
  <h1>This image is likely: {label}</h1><br><h3>
112
-
113
  Probabilites:<br>
114
  Real: {px[1][0]}<br>
115
  AI: {px[0][0]}"""
 
116
  results = {}
117
- for idx,result in enumerate(px):
118
- results[labels[idx]] = px[idx][0]
119
- #results[labels['label']] = result['score']
120
- fin_sum.append(results)
121
- return gr.HTML.update(html_out),results
122
- def aiornot2(image):
123
- labels = ["Real", "AI"]
124
- mod=models[2]
125
- feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
126
- #feature_extractor2 = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
127
- model2 = AutoModelForImageClassification.from_pretrained(mod)
128
- input = feature_extractor2(image, return_tensors="pt")
129
- with torch.no_grad():
130
- outputs = model2(**input)
131
- logits = outputs.logits
132
- probability = softmax(logits)
133
- px = pd.DataFrame(probability.numpy())
134
- prediction = logits.argmax(-1).item()
135
- label = labels[prediction]
136
- html_out = f"""
137
- <h1>This image is likely: {label}</h1><br><h3>
138
-
139
- Probabilites:<br>
140
- Real: {px[0][0]}<br>
141
- AI: {px[1][0]}"""
142
-
143
- results = {}
144
- for idx,result in enumerate(px):
145
  results[labels[idx]] = px[idx][0]
146
- #results[labels['label']] = result['score']
147
  fin_sum.append(results)
148
-
149
- return gr.HTML.update(html_out),results
150
 
151
  def load_url(url):
152
  try:
153
- urllib.request.urlretrieve(
154
- f'{url}',
155
- f"{uid}tmp_im.png")
156
  image = Image.open(f"{uid}tmp_im.png")
157
  mes = "Image Loaded"
158
  except Exception as e:
159
- image=None
160
- mes=f"Image not Found<br>Error: {e}"
161
- return image,mes
162
 
163
  def tot_prob():
164
  try:
165
- fin_out = fin_sum[0]["Real"]+fin_sum[1]["Real"]+fin_sum[2]["Real"]+fin_sum[3]["Real"]+fin_sum[4]["Real"]+fin_sum[5]["Real"]
166
- fin_out = fin_out/6
167
- fin_sub = 1-fin_out
168
- out={
169
- "Real":f"{fin_out}",
170
- "AI":f"{fin_sub}"
171
  }
172
- #fin_sum.clear()
173
- #print (fin_out)
174
  return out
175
  except Exception as e:
176
- pass
177
- print (e)
178
  return None
 
179
  def fin_clear():
180
  fin_sum.clear()
181
  return None
182
 
183
- def upd(image):
184
- print (image)
185
- rand_im = uuid.uuid4()
186
- image.save(f"{rand_im}-vid_tmp_proc.png")
187
- out = Image.open(f"{rand_im}-vid_tmp_proc.png")
188
-
189
- #image.save(f"{rand_im}-vid_tmp_proc.png")
190
- #out = os.path.abspath(f"{rand_im}-vid_tmp_proc.png")
191
- #out_url = f'https://omnibus_AI_or_Not_dev.hf.space/file={out}'
192
- #out_url = f"{rand_im}-vid_tmp_proc.png"
193
- return out
194
-
195
-
196
  with gr.Blocks() as app:
197
- gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
198
- with gr.Column():
199
- inp = gr.Image(type='pil')
200
- in_url=gr.Textbox(label="Image URL")
201
- with gr.Row():
202
- load_btn=gr.Button("Load URL")
203
- btn = gr.Button("Detect AI")
204
- mes = gr.HTML("""""")
205
- with gr.Group():
206
- with gr.Row():
207
- fin=gr.Label(label="Final Probability")
208
- with gr.Row():
209
- with gr.Box():
210
- lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""")
211
- nun0 = gr.HTML("""""")
212
- with gr.Box():
213
- lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""")
214
- nun1 = gr.HTML("""""")
215
- with gr.Box():
216
- lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
217
- nun2 = gr.HTML("""""")
218
-
219
- with gr.Row():
220
- with gr.Box():
221
- n_out0=gr.Label(label="Output")
222
- outp0 = gr.HTML("""""")
223
- with gr.Box():
224
- n_out1=gr.Label(label="Output")
225
- outp1 = gr.HTML("""""")
226
- with gr.Box():
227
- n_out2=gr.Label(label="Output")
228
- outp2 = gr.HTML("""""")
229
- with gr.Row():
230
- with gr.Box():
231
- n_out3=gr.Label(label="Output")
232
- outp3 = gr.HTML("""""")
233
- with gr.Box():
234
- n_out4=gr.Label(label="Output")
235
- outp4 = gr.HTML("""""")
236
- with gr.Box():
237
- n_out5=gr.Label(label="Output")
238
- outp5 = gr.HTML("""""")
239
- hid_box=gr.Textbox(visible=False)
240
- hid_im = gr.Image(type="pil",visible=False)
241
- def echo(inp):
242
- return inp
243
-
244
- #inp.change(echo,inp,hid_im).then(upd,hid_im,inp)
245
-
246
- btn.click(fin_clear,None,fin,show_progress=False)
247
- load_btn.click(load_url,in_url,[inp,mes])
248
 
249
- btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin,show_progress=False)
250
- btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin,show_progress=False)
251
- btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin,show_progress=False)
 
 
 
252
 
253
- btn.click(image_classifier0,[inp],[n_out3]).then(tot_prob,None,fin,show_progress=False)
254
- btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False)
255
- btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False)
 
256
 
257
- app.launch(show_api=False,max_threads=24)
 
1
  import gradio as gr
2
  import torch
3
+ from transformers import AutoFeatureExtractor, AutoModelForImageClassification
 
4
  import os
5
  from numpy import exp
6
+ import pandas as pd
7
  from PIL import Image
8
  import urllib.request
9
  import uuid
 
10
 
11
+ uid = uuid.uuid4()
12
+
13
+ models = [
14
  "cmckinle/sdxl-flux-detector",
15
  "umm-maybe/AI-image-detector",
16
  "Organika/sdxl-detector",
 
17
  ]
18
 
19
+ fin_sum = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  def softmax(vector):
22
+ e = exp(vector)
23
+ return e / e.sum()
 
 
24
 
25
+ def aiornot(image, model_index):
26
  labels = ["AI", "Real"]
27
+ mod = models[model_index]
28
+ feature_extractor = AutoFeatureExtractor.from_pretrained(mod)
29
+ model = AutoModelForImageClassification.from_pretrained(mod)
30
+ input = feature_extractor(image, return_tensors="pt")
31
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  with torch.no_grad():
33
+ outputs = model(**input)
34
  logits = outputs.logits
35
  probability = softmax(logits)
36
  px = pd.DataFrame(probability.numpy())
37
+
38
  prediction = logits.argmax(-1).item()
39
  label = labels[prediction]
40
+
41
  html_out = f"""
42
  <h1>This image is likely: {label}</h1><br><h3>
 
43
  Probabilites:<br>
44
  Real: {px[1][0]}<br>
45
  AI: {px[0][0]}"""
46
+
47
  results = {}
48
+ for idx, result in enumerate(px):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  results[labels[idx]] = px[idx][0]
50
+
51
  fin_sum.append(results)
52
+ return gr.HTML.update(html_out), results
 
53
 
54
  def load_url(url):
55
  try:
56
+ urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
 
 
57
  image = Image.open(f"{uid}tmp_im.png")
58
  mes = "Image Loaded"
59
  except Exception as e:
60
+ image = None
61
+ mes = f"Image not Found<br>Error: {e}"
62
+ return image, mes
63
 
64
  def tot_prob():
65
  try:
66
+ fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum)
67
+ fin_sub = 1 - fin_out
68
+ out = {
69
+ "Real": f"{fin_out}",
70
+ "AI": f"{fin_sub}"
 
71
  }
 
 
72
  return out
73
  except Exception as e:
74
+ print(e)
 
75
  return None
76
+
77
  def fin_clear():
78
  fin_sum.clear()
79
  return None
80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  with gr.Blocks() as app:
82
+ gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></center>""")
83
+ inp = gr.Image(type='pil')
84
+ in_url = gr.Textbox(label="Image URL")
85
+ load_btn = gr.Button("Load URL")
86
+ btn = gr.Button("Detect AI")
87
+ mes = gr.HTML("""""")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
+ fin = gr.Label(label="Final Probability")
90
+ outp0 = gr.HTML("""""")
91
+ outp1 = gr.HTML("""""")
92
+ outp2 = gr.HTML("""""")
93
+
94
+ load_btn.click(load_url, in_url, [inp, mes])
95
 
96
+ btn.click(fin_clear, None, fin, show_progress=False)
97
+ btn.click(lambda img: aiornot(img, 0), inp, [outp0]).then(tot_prob, None, fin, show_progress=False)
98
+ btn.click(lambda img: aiornot(img, 1), inp, [outp1]).then(tot_prob, None, fin, show_progress=False)
99
+ btn.click(lambda img: aiornot(img, 2), inp, [outp2]).then(tot_prob, None, fin, show_progress=False)
100
 
101
+ app.launch(show_api=False, max_threads=24)