Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,257 +1,216 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
4 |
-
#from transformers import pipeline
|
5 |
import os
|
6 |
from numpy import exp
|
7 |
-
import pandas as
|
8 |
from PIL import Image
|
9 |
import urllib.request
|
10 |
import uuid
|
11 |
-
uid=uuid.uuid4()
|
12 |
|
13 |
-
models
|
14 |
-
|
15 |
"umm-maybe/AI-image-detector",
|
16 |
"Organika/sdxl-detector",
|
17 |
-
|
18 |
]
|
19 |
|
20 |
pipe0 = pipeline("image-classification", f"{models[0]}")
|
21 |
pipe1 = pipeline("image-classification", f"{models[1]}")
|
22 |
pipe2 = pipeline("image-classification", f"{models[2]}")
|
23 |
-
|
24 |
|
25 |
-
fin_sum=[]
|
|
|
|
|
|
|
|
|
|
|
26 |
def image_classifier0(image):
|
27 |
-
labels = ["AI","Real"]
|
28 |
outputs = pipe0(image)
|
29 |
results = {}
|
30 |
-
|
31 |
-
|
32 |
-
results[labels[idx]] = outputs[idx]['score']
|
33 |
-
#print (result_test)
|
34 |
-
#for result in outputs:
|
35 |
-
# results[result['label']] = result['score']
|
36 |
-
#print (results)
|
37 |
fin_sum.append(results)
|
38 |
return results
|
|
|
39 |
def image_classifier1(image):
|
40 |
-
labels = ["AI","Real"]
|
41 |
outputs = pipe1(image)
|
42 |
results = {}
|
43 |
-
|
44 |
-
|
45 |
-
results[labels[idx]] = outputs[idx]['score']
|
46 |
-
#print (result_test)
|
47 |
-
#for result in outputs:
|
48 |
-
# results[result['label']] = result['score']
|
49 |
-
#print (results)
|
50 |
fin_sum.append(results)
|
51 |
return results
|
|
|
52 |
def image_classifier2(image):
|
53 |
-
labels = ["AI","Real"]
|
54 |
outputs = pipe2(image)
|
55 |
results = {}
|
56 |
-
|
57 |
-
|
58 |
-
results[labels[idx]] = outputs[idx]['score']
|
59 |
-
#print (result_test)
|
60 |
-
#for result in outputs:
|
61 |
-
# results[result['label']] = result['score']
|
62 |
-
#print (results)
|
63 |
fin_sum.append(results)
|
64 |
return results
|
65 |
|
66 |
-
def
|
67 |
-
e = exp(vector)
|
68 |
-
return e / e.sum()
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
def aiornot0(image):
|
73 |
labels = ["AI", "Real"]
|
74 |
-
mod=models[0]
|
75 |
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
|
76 |
model0 = AutoModelForImageClassification.from_pretrained(mod)
|
77 |
input = feature_extractor0(image, return_tensors="pt")
|
78 |
with torch.no_grad():
|
79 |
outputs = model0(**input)
|
80 |
logits = outputs.logits
|
81 |
-
probability = softmax(logits)
|
82 |
px = pd.DataFrame(probability.numpy())
|
83 |
prediction = logits.argmax(-1).item()
|
84 |
label = labels[prediction]
|
|
|
85 |
html_out = f"""
|
86 |
<h1>This image is likely: {label}</h1><br><h3>
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
results = {
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
fin_sum.append(results)
|
96 |
-
return gr.HTML.update(html_out),results
|
97 |
-
|
|
|
98 |
labels = ["AI", "Real"]
|
99 |
-
mod=models[1]
|
100 |
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
|
101 |
model1 = AutoModelForImageClassification.from_pretrained(mod)
|
102 |
input = feature_extractor1(image, return_tensors="pt")
|
103 |
with torch.no_grad():
|
104 |
outputs = model1(**input)
|
105 |
logits = outputs.logits
|
106 |
-
probability = softmax(logits)
|
107 |
px = pd.DataFrame(probability.numpy())
|
108 |
prediction = logits.argmax(-1).item()
|
109 |
label = labels[prediction]
|
|
|
110 |
html_out = f"""
|
111 |
<h1>This image is likely: {label}</h1><br><h3>
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
results = {
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
fin_sum.append(results)
|
121 |
-
return gr.HTML.update(html_out),results
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
125 |
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
|
126 |
-
#feature_extractor2 = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
127 |
model2 = AutoModelForImageClassification.from_pretrained(mod)
|
128 |
input = feature_extractor2(image, return_tensors="pt")
|
129 |
with torch.no_grad():
|
130 |
outputs = model2(**input)
|
131 |
logits = outputs.logits
|
132 |
-
probability = softmax(logits)
|
133 |
px = pd.DataFrame(probability.numpy())
|
134 |
prediction = logits.argmax(-1).item()
|
135 |
label = labels[prediction]
|
|
|
136 |
html_out = f"""
|
137 |
<h1>This image is likely: {label}</h1><br><h3>
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
#results[labels['label']] = result['score']
|
147 |
fin_sum.append(results)
|
148 |
-
|
149 |
-
return gr.HTML.update(html_out),results
|
150 |
|
151 |
def load_url(url):
|
152 |
try:
|
153 |
-
urllib.request.urlretrieve(
|
154 |
-
f'{url}',
|
155 |
-
f"{uid}tmp_im.png")
|
156 |
image = Image.open(f"{uid}tmp_im.png")
|
157 |
mes = "Image Loaded"
|
158 |
except Exception as e:
|
159 |
-
image=None
|
160 |
-
mes=f"Image not Found<br>Error: {e}"
|
161 |
-
return image,mes
|
162 |
|
163 |
def tot_prob():
|
164 |
try:
|
165 |
-
fin_out =
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
"
|
170 |
-
"AI":f"{fin_sub}"
|
171 |
}
|
172 |
-
#fin_sum.clear()
|
173 |
-
#print (fin_out)
|
174 |
return out
|
175 |
except Exception as e:
|
176 |
-
|
177 |
-
print (e)
|
178 |
return None
|
|
|
179 |
def fin_clear():
|
180 |
fin_sum.clear()
|
181 |
return None
|
182 |
|
183 |
def upd(image):
|
184 |
-
print (image)
|
185 |
rand_im = uuid.uuid4()
|
186 |
image.save(f"{rand_im}-vid_tmp_proc.png")
|
187 |
out = Image.open(f"{rand_im}-vid_tmp_proc.png")
|
|
|
188 |
|
189 |
-
#image.save(f"{rand_im}-vid_tmp_proc.png")
|
190 |
-
#out = os.path.abspath(f"{rand_im}-vid_tmp_proc.png")
|
191 |
-
#out_url = f'https://omnibus_AI_or_Not_dev.hf.space/file={out}'
|
192 |
-
#out_url = f"{rand_im}-vid_tmp_proc.png"
|
193 |
-
return out
|
194 |
-
|
195 |
-
|
196 |
with gr.Blocks() as app:
|
197 |
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
|
198 |
with gr.Column():
|
199 |
inp = gr.Image(type='pil')
|
200 |
-
in_url=gr.Textbox(label="Image URL")
|
201 |
with gr.Row():
|
202 |
-
load_btn=gr.Button("Load URL")
|
203 |
btn = gr.Button("Detect AI")
|
204 |
mes = gr.HTML("""""")
|
205 |
-
|
|
|
206 |
with gr.Row():
|
207 |
-
fin=gr.Label(label="Final Probability")
|
208 |
with gr.Row():
|
|
|
209 |
with gr.Box():
|
210 |
-
lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""")
|
211 |
nun0 = gr.HTML("""""")
|
212 |
with gr.Box():
|
213 |
-
lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""")
|
214 |
nun1 = gr.HTML("""""")
|
215 |
with gr.Box():
|
216 |
-
lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
|
217 |
nun2 = gr.HTML("""""")
|
218 |
-
|
219 |
with gr.Row():
|
220 |
with gr.Box():
|
221 |
-
n_out0=gr.Label(label="Output")
|
222 |
outp0 = gr.HTML("""""")
|
223 |
with gr.Box():
|
224 |
-
n_out1=gr.Label(label="Output")
|
225 |
outp1 = gr.HTML("""""")
|
226 |
with gr.Box():
|
227 |
-
n_out2=gr.Label(label="Output")
|
228 |
-
outp2 = gr.HTML("""""")
|
229 |
-
with gr.Row():
|
230 |
-
with gr.Box():
|
231 |
-
n_out3=gr.Label(label="Output")
|
232 |
-
outp3 = gr.HTML("""""")
|
233 |
-
with gr.Box():
|
234 |
-
n_out4=gr.Label(label="Output")
|
235 |
-
outp4 = gr.HTML("""""")
|
236 |
-
with gr.Box():
|
237 |
-
n_out5=gr.Label(label="Output")
|
238 |
-
outp5 = gr.HTML("""""")
|
239 |
-
hid_box=gr.Textbox(visible=False)
|
240 |
-
hid_im = gr.Image(type="pil",visible=False)
|
241 |
-
def echo(inp):
|
242 |
-
return inp
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
btn.click(
|
250 |
-
|
251 |
-
btn.click(
|
252 |
-
|
253 |
-
btn.click(
|
254 |
-
btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False)
|
255 |
-
btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False)
|
256 |
|
257 |
-
app.launch(show_api=False,max_threads=24)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
|
|
4 |
import os
|
5 |
from numpy import exp
|
6 |
+
import pandas as pd
|
7 |
from PIL import Image
|
8 |
import urllib.request
|
9 |
import uuid
|
10 |
+
uid = uuid.uuid4()
|
11 |
|
12 |
+
# Reordered models as requested
|
13 |
+
models = [
|
14 |
"umm-maybe/AI-image-detector",
|
15 |
"Organika/sdxl-detector",
|
16 |
+
"cmckinle/sdxl-flux-detector",
|
17 |
]
|
18 |
|
19 |
pipe0 = pipeline("image-classification", f"{models[0]}")
|
20 |
pipe1 = pipeline("image-classification", f"{models[1]}")
|
21 |
pipe2 = pipeline("image-classification", f"{models[2]}")
|
|
|
22 |
|
23 |
+
fin_sum = []
|
24 |
+
|
25 |
+
def softmax(vector):
|
26 |
+
e = exp(vector - vector.max()) # for numerical stability
|
27 |
+
return e / e.sum()
|
28 |
+
|
29 |
def image_classifier0(image):
|
30 |
+
labels = ["AI", "Real"]
|
31 |
outputs = pipe0(image)
|
32 |
results = {}
|
33 |
+
for idx, result in enumerate(outputs):
|
34 |
+
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
|
|
|
|
|
|
|
|
|
|
|
35 |
fin_sum.append(results)
|
36 |
return results
|
37 |
+
|
38 |
def image_classifier1(image):
|
39 |
+
labels = ["AI", "Real"]
|
40 |
outputs = pipe1(image)
|
41 |
results = {}
|
42 |
+
for idx, result in enumerate(outputs):
|
43 |
+
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
|
|
|
|
|
|
|
|
|
|
|
44 |
fin_sum.append(results)
|
45 |
return results
|
46 |
+
|
47 |
def image_classifier2(image):
|
48 |
+
labels = ["AI", "Real"]
|
49 |
outputs = pipe2(image)
|
50 |
results = {}
|
51 |
+
for idx, result in enumerate(outputs):
|
52 |
+
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
|
|
|
|
|
|
|
|
|
|
|
53 |
fin_sum.append(results)
|
54 |
return results
|
55 |
|
56 |
+
def aiornot0(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
labels = ["AI", "Real"]
|
58 |
+
mod = models[0]
|
59 |
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
|
60 |
model0 = AutoModelForImageClassification.from_pretrained(mod)
|
61 |
input = feature_extractor0(image, return_tensors="pt")
|
62 |
with torch.no_grad():
|
63 |
outputs = model0(**input)
|
64 |
logits = outputs.logits
|
65 |
+
probability = softmax(logits) # Apply softmax on logits
|
66 |
px = pd.DataFrame(probability.numpy())
|
67 |
prediction = logits.argmax(-1).item()
|
68 |
label = labels[prediction]
|
69 |
+
|
70 |
html_out = f"""
|
71 |
<h1>This image is likely: {label}</h1><br><h3>
|
72 |
+
Probabilities:<br>
|
73 |
+
Real: {float(px[1][0])}<br>
|
74 |
+
AI: {float(px[0][0])}"""
|
75 |
+
|
76 |
+
results = {
|
77 |
+
"Real": float(px[1][0]),
|
78 |
+
"AI": float(px[0][0])
|
79 |
+
}
|
80 |
fin_sum.append(results)
|
81 |
+
return gr.HTML.update(html_out), results
|
82 |
+
|
83 |
+
def aiornot1(image):
|
84 |
labels = ["AI", "Real"]
|
85 |
+
mod = models[1]
|
86 |
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
|
87 |
model1 = AutoModelForImageClassification.from_pretrained(mod)
|
88 |
input = feature_extractor1(image, return_tensors="pt")
|
89 |
with torch.no_grad():
|
90 |
outputs = model1(**input)
|
91 |
logits = outputs.logits
|
92 |
+
probability = softmax(logits) # Apply softmax on logits
|
93 |
px = pd.DataFrame(probability.numpy())
|
94 |
prediction = logits.argmax(-1).item()
|
95 |
label = labels[prediction]
|
96 |
+
|
97 |
html_out = f"""
|
98 |
<h1>This image is likely: {label}</h1><br><h3>
|
99 |
+
Probabilities:<br>
|
100 |
+
Real: {float(px[1][0])}<br>
|
101 |
+
AI: {float(px[0][0])}"""
|
102 |
+
|
103 |
+
results = {
|
104 |
+
"Real": float(px[1][0]),
|
105 |
+
"AI": float(px[0][0])
|
106 |
+
}
|
107 |
fin_sum.append(results)
|
108 |
+
return gr.HTML.update(html_out), results
|
109 |
+
|
110 |
+
def aiornot2(image):
|
111 |
+
labels = ["AI", "Real"]
|
112 |
+
mod = models[2]
|
113 |
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
|
|
|
114 |
model2 = AutoModelForImageClassification.from_pretrained(mod)
|
115 |
input = feature_extractor2(image, return_tensors="pt")
|
116 |
with torch.no_grad():
|
117 |
outputs = model2(**input)
|
118 |
logits = outputs.logits
|
119 |
+
probability = softmax(logits) # Apply softmax on logits
|
120 |
px = pd.DataFrame(probability.numpy())
|
121 |
prediction = logits.argmax(-1).item()
|
122 |
label = labels[prediction]
|
123 |
+
|
124 |
html_out = f"""
|
125 |
<h1>This image is likely: {label}</h1><br><h3>
|
126 |
+
Probabilities:<br>
|
127 |
+
Real: {float(px[1][0])}<br>
|
128 |
+
AI: {float(px[0][0])}"""
|
129 |
+
|
130 |
+
results = {
|
131 |
+
"Real": float(px[1][0]),
|
132 |
+
"AI": float(px[0][0])
|
133 |
+
}
|
|
|
134 |
fin_sum.append(results)
|
135 |
+
return gr.HTML.update(html_out), results
|
|
|
136 |
|
137 |
def load_url(url):
|
138 |
try:
|
139 |
+
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
|
|
|
|
|
140 |
image = Image.open(f"{uid}tmp_im.png")
|
141 |
mes = "Image Loaded"
|
142 |
except Exception as e:
|
143 |
+
image = None
|
144 |
+
mes = f"Image not Found<br>Error: {e}"
|
145 |
+
return image, mes
|
146 |
|
147 |
def tot_prob():
|
148 |
try:
|
149 |
+
fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum)
|
150 |
+
fin_sub = 1 - fin_out
|
151 |
+
out = {
|
152 |
+
"Real": f"{fin_out}",
|
153 |
+
"AI": f"{fin_sub}"
|
|
|
154 |
}
|
|
|
|
|
155 |
return out
|
156 |
except Exception as e:
|
157 |
+
print(e)
|
|
|
158 |
return None
|
159 |
+
|
160 |
def fin_clear():
|
161 |
fin_sum.clear()
|
162 |
return None
|
163 |
|
164 |
def upd(image):
|
|
|
165 |
rand_im = uuid.uuid4()
|
166 |
image.save(f"{rand_im}-vid_tmp_proc.png")
|
167 |
out = Image.open(f"{rand_im}-vid_tmp_proc.png")
|
168 |
+
return out
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
with gr.Blocks() as app:
|
171 |
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
|
172 |
with gr.Column():
|
173 |
inp = gr.Image(type='pil')
|
174 |
+
in_url = gr.Textbox(label="Image URL")
|
175 |
with gr.Row():
|
176 |
+
load_btn = gr.Button("Load URL")
|
177 |
btn = gr.Button("Detect AI")
|
178 |
mes = gr.HTML("""""")
|
179 |
+
|
180 |
+
with gr.Group():
|
181 |
with gr.Row():
|
182 |
+
fin = gr.Label(label="Final Probability", visible=False)
|
183 |
with gr.Row():
|
184 |
+
# Updated model names
|
185 |
with gr.Box():
|
186 |
+
lab0 = gr.HTML(f"""<b>Testing on Original Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""")
|
187 |
nun0 = gr.HTML("""""")
|
188 |
with gr.Box():
|
189 |
+
lab1 = gr.HTML(f"""<b>Testing on SDXL Fine Tuned Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""")
|
190 |
nun1 = gr.HTML("""""")
|
191 |
with gr.Box():
|
192 |
+
lab2 = gr.HTML(f"""<b>Testing on SDXL and Flux Fine Tuned Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
|
193 |
nun2 = gr.HTML("""""")
|
|
|
194 |
with gr.Row():
|
195 |
with gr.Box():
|
196 |
+
n_out0 = gr.Label(label="Output")
|
197 |
outp0 = gr.HTML("""""")
|
198 |
with gr.Box():
|
199 |
+
n_out1 = gr.Label(label="Output")
|
200 |
outp1 = gr.HTML("""""")
|
201 |
with gr.Box():
|
202 |
+
n_out2 = gr.Label(label="Output")
|
203 |
+
outp2 = gr.HTML("""""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
btn.click(fin_clear, None, fin, show_progress=False)
|
206 |
+
load_btn.click(load_url, in_url, [inp, mes])
|
207 |
+
|
208 |
+
btn.click(aiornot0, [inp], [outp0, n_out0]).then(tot_prob, None, fin, show_progress=False)
|
209 |
+
btn.click(aiornot1, [inp], [outp1, n_out1]).then(tot_prob, None, fin, show_progress=False)
|
210 |
+
btn.click(aiornot2, [inp], [outp2, n_out2]).then(tot_prob, None, fin, show_progress=False)
|
211 |
+
|
212 |
+
btn.click(image_classifier0, [inp], [n_out0]).then(tot_prob, None, fin, show_progress=False)
|
213 |
+
btn.click(image_classifier1, [inp], [n_out1]).then(tot_prob, None, fin, show_progress=False)
|
214 |
+
btn.click(image_classifier2, [inp], [n_out2]).then(tot_prob, None, fin, show_progress=False)
|
|
|
|
|
215 |
|
216 |
+
app.launch(show_api=False, max_threads=24)
|