Spaces:
Sleeping
Sleeping
File size: 2,290 Bytes
6364b8e 063d7d0 436d80d 6364b8e 436d80d 759d503 53c3b30 759d503 063d7d0 387ecb3 6364b8e 387ecb3 53c3b30 6364b8e 436d80d 6364b8e 387ecb3 6364b8e 759d503 836257c 759d503 387ecb3 6364b8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
from numpy import exp
def softmax(vector):
e = exp(vector)
return e / e.sum()
models=[
"Nahrawy/AIorNot",
"arnolfokam/ai-generated-image-detector",
"umm-maybe/AI-image-detector",
]
def aiornot0(image):
labels = ["Real", "AI"]
mod=models[0]
feature_extractor = AutoFeatureExtractor.from_pretrained(mod)
model = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = model(**input)
print (outputs)
logits = outputs.logits
print (logits)
probability = softmax(logits, axis=-1)
print(probability)
prediction = logits.argmax(-1).item()
label = labels[prediction]
return label
def aiornot1(image):
labels = ["Real", "AI"]
mod=models[1]
feature_extractor = AutoFeatureExtractor.from_pretrained(mod)
model = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = model(**input)
print (outputs)
logits = outputs.logits
print (logits)
prediction = logits.argmax(-1).item()
label = labels[prediction]
return label
def aiornot2(image):
labels = ["Real", "AI"]
mod=models[2]
feature_extractor = AutoFeatureExtractor.from_pretrained(mod)
model = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = model(**input)
print (outputs)
logits = outputs.logits
print (logits)
prediction = logits.argmax(-1).item()
label = labels[prediction]
return label
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
inp = gr.Image()
mod_choose=gr.Number(value=0)
btn = gr.Button()
with gr.Column():
outp0 = gr.Textbox()
outp1 = gr.Textbox()
outp2 = gr.Textbox()
btn.click(aiornot0,[inp],outp0)
btn.click(aiornot1,[inp],outp1)
btn.click(aiornot2,[inp],outp2)
app.launch() |