File size: 1,503 Bytes
6364b8e
 
063d7d0
6364b8e
759d503
 
 
 
 
063d7d0
 
 
 
 
 
 
 
 
 
 
 
 
759d503
 
 
1573304
6364b8e
759d503
 
 
3de46d7
6364b8e
 
 
 
 
 
 
 
 
 
 
 
759d503
3de46d7
759d503
 
6364b8e
759d503
6364b8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline

models=[
    "Nahrawy/AIorNot",
    "RishiDarkDevil/ai-image-det-resnet152",
    "arnolfokam/ai-generated-image-detector",
]
pipe = pipeline("image-classification", "umm-maybe/AI-image-detector")

def image_classifier(image):
    outputs = pipe(image)
    results = {}
    for result in outputs:
        results[result['label']] = result['score']
    return results



#demo = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label", title=title, description=description)
#demo.launch(show_api=False)



def aiornot(image,mod_choose):    
    labels = ["Real", "AI"]
    
    #feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
    mod=models[int(mod_choose)]
    feature_extractor = AutoFeatureExtractor.from_pretrained("Nahrawy/AIorNot")
    model = AutoModelForImageClassification.from_pretrained("Nahrawy/AIorNot")
    
    input = feature_extractor(image, return_tensors="pt")
    with torch.no_grad():
      outputs = model(**input)
      logits = outputs.logits
    prediction = logits.argmax(-1).item()
    label = labels[prediction] 
    return label

with gr.Blocks() as app:
    with gr.Row():
        with gr.Column():
            inp = gr.Image(type='filepath')
            mod_choose=gr.Number(value=0)
            btn = gr.Button()
    outp = gr.Textbox()
    btn.click(aiornot,[inp,mod_choose],outp)
app.launch()