Spaces:
Running
Running
File size: 5,177 Bytes
88e550b 128a4c1 69dfe66 88e550b 69dfe66 128a4c1 daa8529 128a4c1 dc1d715 128a4c1 aa345fa 128a4c1 dc1d715 128a4c1 69dfe66 128a4c1 dc1d715 128a4c1 dc1d715 128a4c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import streamlit as st
import os
import torch
from transformers import AutoTokenizer
from jax import numpy as jnp
import json
import requests
import zipfile
import io
import natsort
from PIL import Image as PilImage
from torchvision import datasets, transforms
from torchvision.transforms import CenterCrop, Normalize, Resize, ToTensor
from torchvision.transforms.functional import InterpolationMode
from tqdm import tqdm
from modeling_hybrid_clip import FlaxHybridCLIP
@st.cache
def get_model():
return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian")
@st.cache
def download_images():
# from sentence_transformers import SentenceTransformer, util
img_folder = "photos/"
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
os.makedirs(img_folder, exist_ok=True)
photo_filename = "unsplash-25k-photos.zip"
if not os.path.exists(photo_filename): # Download dataset if does not exist
print(f"Downloading {photo_filename}...")
r = requests.get("http://sbert.net/datasets/" + photo_filename, stream=True)
z = zipfile.ZipFile(io.BytesIO(r.content))
print("Extracting the dataset...")
z.extractall(path=img_folder)
print("Done.")
@st.cache(allow_output_mutation=True)
def get_image_features(model, image_dir):
image_size = model.config.vision_config.image_size
val_preprocess = transforms.Compose(
[
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
CenterCrop(image_size),
ToTensor(),
Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
]
)
dataset = CustomDataSet(image_dir, transform=val_preprocess)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=16,
shuffle=False,
num_workers=4,
drop_last=False,
)
return precompute_image_features(loader), dataset
class CustomDataSet(torch.utils.data.Dataset):
def __init__(self, main_dir, transform):
self.main_dir = main_dir
self.transform = transform
all_imgs = os.listdir(main_dir)
self.total_imgs = natsort.natsorted(all_imgs)
def __len__(self):
return len(self.total_imgs)
def get_image_name(self, idx):
return self.total_imgs[idx]
def __getitem__(self, idx):
img_loc = os.path.join(self.main_dir, self.total_imgs[idx])
image = PilImage.open(img_loc).convert("RGB")
tensor_image = self.transform(image)
return tensor_image
def text_encoder(text, tokenizer):
inputs = tokenizer(
[text],
max_length=96,
truncation=True,
padding="max_length",
return_tensors="np",
)
embedding = model.get_text_features(inputs["input_ids"], inputs["attention_mask"])[
0
]
embedding /= jnp.linalg.norm(embedding)
return jnp.expand_dims(embedding, axis=0)
@st.cache
def precompute_image_features(model, loader):
image_features = []
for i, (images) in enumerate(tqdm(loader)):
images = images.permute(0, 2, 3, 1).numpy()
features = model.get_image_features(
images,
)
features /= jnp.linalg.norm(features, axis=-1, keepdims=True)
image_features.extend(features)
return jnp.array(image_features)
def find_image(text_query, dataset, tokenizer, image_features, n=1):
zeroshot_weights = text_encoder(text_query, tokenizer)
zeroshot_weights /= jnp.linalg.norm(zeroshot_weights)
distances = jnp.dot(image_features, zeroshot_weights.reshape(-1, 1))
file_paths = []
for i in range(1, n + 1):
idx = jnp.argsort(distances, axis=0)[-i, 0]
file_paths.append("photos/" + dataset.get_image_name(idx))
return file_paths
"""
# CLIP Italian Demo (Flax Community Week)
"""
os.environ["TOKENIZERS_PARALLELISM"] = "false"
query = st.text_input("Insert a query text")
if query:
with st.spinner("Computing in progress..."):
model = get_model()
download_images()
tokenizer = AutoTokenizer.from_pretrained(
"dbmdz/bert-base-italian-xxl-uncased", cache_dir=None, use_fast=True
)
image_size = model.config.vision_config.image_size
val_preprocess = transforms.Compose(
[
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
CenterCrop(image_size),
ToTensor(),
Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
]
)
dataset = CustomDataSet("photos/", transform=val_preprocess)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=16,
shuffle=False,
num_workers=2,
drop_last=False,
)
image_features = precompute_image_features(model, loader)
image_paths = find_image(query, dataset, tokenizer, image_features, n=2)
st.image(image_paths)
|