Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import time | |
import requests | |
import base64 | |
import os | |
token = os.getenv("runpod_key") | |
############################################################# | |
################################################# | |
def SD_call(prompt, image_prompt, age, weight, w_w, color, hair_color,h_c_w, hair_length, h_l_w,hair_texture, h_t_w,skin_details, eye_colors, e_c_w,NSFW): | |
positive = "clothes" | |
negative = "(((naked))), (((nsfw))), porn" | |
serverless_api_id = 'zcparyadhjnmg7' | |
# Define the URL you want to send the request to | |
url = f"https://api.runpod.ai/v2/{serverless_api_id}/runsync" | |
# Define your custom headers | |
headers = { | |
"Authorization": f"Bearer {token}", | |
"Accept": "application/json", | |
"Content-Type": "application/json" | |
} | |
weight = f"{'(' * w_w}{weight} woman{')' * w_w}" | |
hair_color=f"{'(' * h_c_w}{hair_color} hair{')' * h_c_w}" | |
hair_length=f"{'(' * h_l_w}{hair_length} hair{')' * h_l_w}" | |
hair_texture =f"{'(' * h_t_w}{hair_texture} hair{')' * h_t_w}" | |
eye_colors=f"{'(' * e_c_w}{eye_colors} eyes{')' * e_c_w}" | |
if NSFW == True: | |
positive = "((naked)), ((nsfw))" | |
negative = "((clothes))" | |
if prompt.strip(): | |
total_prompt = prompt | |
else: | |
color = ", ".join(color) | |
skin_details = ", ".join(skin_details) | |
total_prompt = f"(looking at viewer:1.1), gorgeous, hot, seductive, {age} years old american {color} woman, {weight}, (eye contact:1.1), beautiful face, hyper detailed, best quality, ultra high res, {hair_length}, {hair_color}, {hair_texture},{eye_colors}, {skin_details}, photorealistic, high resolution, detailed, raw photo, 1girl,{image_prompt}, amateur cellphone photography. f8.0, samsung galaxy, noise, jpeg artefacts, poor lighting, low light, underexposed, high contrast " | |
# Define your data (this could also be a JSON payload) | |
print("SD_processing") | |
data = { | |
"input": { | |
"api": { | |
"method": "POST", | |
"endpoint": "/sdapi/v1/txt2img" | |
}, | |
"payload": { | |
"override_settings": { | |
"sd_model_checkpoint": "CyberRealistic", | |
"sd_vae": "" | |
}, | |
"override_settings_restore_afterwards": True, | |
"refiner_checkpoint": "", | |
"refiner_switch_at": 0.8, | |
"prompt": f"{total_prompt}, {positive}", | |
"negative_prompt": f"EasyNegative, fat, paintings, sketches, lowres, ((monochrome)), ((grayscale)), bad anatomy, text, error, cropped, signature, watermark, username, blurry, bad feet, poorly drawn face, bad proportions, gross proportions, ng_deepnegative_v1_75t, badhandsv5-neg, {negative}", | |
"seed": -1, | |
"batch_size": 1, | |
"steps": 30, | |
"cfg_scale": 7, | |
"width": 520, | |
"height": 520, | |
"sampler_name": "DPM++ SDE Karras", | |
"sampler_index": "DPM++ SDE Karras", | |
"restore_faces": False | |
} | |
} | |
} | |
# data = { | |
# "input": { | |
# "prompt": f"{total_prompt}, {positive}", | |
# "negative_prompt": f"paintings, sketches, lowres, ((monochrome)), ((grayscale)), bad anatomy, text, error, cropped, signature, watermark, username, blurry, bad feet, poorly drawn face, bad proportions, gross proportions, badhandsv5-neg, {negative}", | |
# "width": 512, | |
# "height": 720, | |
# "guidance_scale": 7.5, | |
# "num_inference_steps": 30, | |
# "num_outputs": 1, | |
# "prompt_strength": 0.8, | |
# "scheduler": "K-LMS" | |
# } | |
# } | |
# Send the POST request with headers and data | |
response = requests.post(url, headers=headers, json=data) | |
# Check the response | |
if response.status_code == 200: | |
response_data = response.json() | |
msg_id = response_data['id'] | |
print("Message ID:", msg_id) | |
# Poll the status until it's not 'IN_QUEUE' | |
while response_data['status'] == 'IN_QUEUE': | |
time.sleep(5) # Wait for 5 seconds before checking again | |
print("1") | |
response = requests.get(f"{url}/{msg_id}", headers=headers) | |
try: | |
response_data = response.json() | |
except Exception as e: | |
print("Error decoding JSON:", e) | |
print("Response content:", response.text) | |
break # Exit the loop on JSON decoding error | |
# Check if the response contains images | |
if 'images' in response_data.get('output', {}): | |
print("image") | |
base64_image = response_data['output']['images'][0] | |
image_bytes = base64.b64decode(base64_image) | |
# Save the image to a file | |
image_path = f"output_image_{msg_id}.png" | |
with open(image_path, "wb") as img_file: | |
img_file.write(image_bytes) | |
print(f"Image downloaded successfully: {image_path}") | |
return image_path | |
else: | |
return "No images found in the response." | |
else: | |
# Print error message | |
return f"Error: {response.status_code} - {response.text}" | |
def greet(prompt, image_prompt, age, weight, w_w, color, hair_color, h_c_w, hair_length, h_l_w,hair_texture, h_t_w,skin_details, eye_colors, e_c_w,NSFW): | |
image_path = SD_call(prompt, image_prompt, age, weight, w_w, color, hair_color,h_c_w, hair_length, h_l_w,hair_texture, h_t_w,skin_details, eye_colors, e_c_w,NSFW) | |
if image_path is not None: | |
return image_path | |
else: | |
return None | |
demo = gr.Interface( | |
fn=greet, | |
inputs=[ | |
gr.Textbox(label="Personal prompt", lines=3), | |
gr.Textbox(label="Girl_prompt", lines=3), | |
gr.Slider(label="Age", value=22, minimum=18, maximum=75,step=1), | |
gr.Radio(["skinny", "slim", "athletic", "muscular", "average", "curvy", "chubby", "overweight", "obese"],label="Body Type",type="value"), | |
gr.Slider(label="Body Type weight", value=1, minimum=1, maximum=4, step=1), | |
gr.CheckboxGroup(choices=["asian", "white", "black", "latina", "middle eastern","indigenous", "Mixed"],label="Color",type="value"), | |
gr.Radio(["black", "brown", "brunette", "dark brown", "light brown", "blonde", "dirty blonde", "platinum blonde", "red", "auburn", "ginger", "strawberry blonde", "gray", "silver", "white", "blue", "green", "purple", "pink", "rainbow", "multicolored"],label="Hair Color",type="value"), | |
gr.Slider(label="Hair Color weight", value=1, minimum=1, maximum=4, step=1), | |
gr.Radio(["short", "long", "mi-long"],label="Hair length", type="value"), | |
gr.Slider(label="Hair length weight", value=1, minimum=1, maximum=4, step=1), | |
gr.Radio(["straight", "curvy", "wavy"],label="Hair texture", type="value"), | |
gr.Slider(label="Hair texture weight", value=1, minimum=1, maximum=4, step=1), | |
gr.CheckboxGroup(choices=["((tattoos))", "((birthmark))", "freckles", "((scars))"],label="Skin details", type="value"), | |
gr.Radio(["brown", "hazel", "green", "blue", "gray", "amber", "black", "red", "violet"],label="Eyes Color", type="value"), | |
gr.Slider(label="Eyes color weight", value=1, minimum=1, maximum=4, step=1), | |
gr.Checkbox(label="NSFW", info="πππ") | |
], | |
flagging_options=["blurry", "incorrect", "other"], | |
outputs=[gr.Image(label="Generated Image", type="filepath")], | |
) | |
demo.launch(share=True) |