import torch from transformers import AutoAdapterModel, AutoTokenizer from datasets import load_dataset import gradio as gr # 加载模型和分词器 model_name = "ckcl/mexc_price_model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoAdapterModel.from_pretrained(model_name) model.load_adapter(model_name, set_active=True) # 加载数据集 ds = load_dataset("ckcl/BTC_USDT_dataset") # 定义预测函数 def predict(input_text): # 处理输入 inputs = tokenizer(input_text, return_tensors="pt") # 进行预测 with torch.no_grad(): outputs = model(**inputs) # 获取预测结果 predictions = torch.argmax(outputs.logits, dim=-1) return str(predictions.item()) # 创建 Gradio 界面 iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="MEXC Contract Prediction", description="Predict contract prices for MEXC.") # 启动应用 iface.launch()