ParsedBill / app.py
marioggil's picture
All api
1fa72e2
from PIL import Image
from transformers import DonutProcessor, VisionEncoderDecoderModel
import torch
import re
import gradio as gr
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
def ClassificateDocs(pathimage):
image = Image.open(pathimage)
pixel_values = processor(image, return_tensors="pt").pixel_values
task_prompt = "<s_rvlcdip>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
return processor.token2json(sequence)
processor_prs= DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
model_prs = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
def ProcessBill(pathimage ):
image = Image.open(pathimage)
pixel_values = processor_prs(image, return_tensors="pt").pixel_values
task_prompt = "<s_cord-v2>"
decoder_input_ids = processor_prs.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt")["input_ids"]
device = "cuda" if torch.cuda.is_available() else "cpu"
model_prs.to(device)
outputs = model_prs.generate(pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model_prs.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor_prs.tokenizer.pad_token_id,
eos_token_id=processor_prs.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor_prs.tokenizer.unk_token_id]],
return_dict_in_generate=True,
output_scores=True,)
sequence = processor_prs.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor_prs.tokenizer.eos_token, "").replace(processor_prs.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
return processor_prs.token2json(sequence)
processor_qa= DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model_qa = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
def QAsBill(pathimage,question="When is the coffee break?" ):
image = Image.open(pathimage)
pixel_values = processor_qa(image, return_tensors="pt").pixel_values
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
prompt = task_prompt.replace("{user_input}", question)
decoder_input_ids = processor_qa.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
device = "cuda" if torch.cuda.is_available() else "cpu"
model_qa.to(device)
outputs = model_qa.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
pad_token_id=processor_qa.tokenizer.pad_token_id,
eos_token_id=processor_qa.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[processor_qa.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence = processor_qa.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor_qa.tokenizer.eos_token, "").replace(processor._qatokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
return processor_qa.token2json(sequence)
demo = gr.Blocks()
gradio_app_cls = gr.Interface(
fn=ClassificateDocs,
inputs=[
gr.Image(type='filepath')
],
outputs="text",
)
gradio_app_prs = gr.Interface(
fn=ProcessBill,
inputs=[
gr.Image(type='filepath')
],
outputs="text",
)
gradio_app_qa = gr.Interface(
fn=QAsBill,
inputs=[
gr.Image(type='filepath'),
gr.Text()
],
outputs="text",
)
demo = gr.TabbedInterface([gradio_app_cls, gradio_app_prs,gradio_app_qa], ["class", "parse","QA"])
if __name__ == "__main__":
demo.launch()