|
import warnings |
|
|
|
warnings.filterwarnings('ignore') |
|
|
|
import librosa |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
class Mel: |
|
|
|
def __init__( |
|
self, |
|
x_res: int = 256, |
|
y_res: int = 256, |
|
sample_rate: int = 22050, |
|
n_fft: int = 2048, |
|
hop_length: int = 512, |
|
top_db: int = 80, |
|
): |
|
"""Class to convert audio to mel spectrograms and vice versa. |
|
|
|
Args: |
|
x_res (int): x resolution of spectrogram (time) |
|
y_res (int): y resolution of spectrogram (frequency bins) |
|
sample_rate (int): sample rate of audio |
|
n_fft (int): number of Fast Fourier Transforms |
|
hop_length (int): hop length (a higher number is recommended for lower than 256 y_res) |
|
top_db (int): loudest in decibels |
|
""" |
|
self.x_res = x_res |
|
self.y_res = y_res |
|
self.sr = sample_rate |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.n_mels = self.y_res |
|
self.slice_size = self.x_res * self.hop_length - 1 |
|
self.fmax = self.sr / 2 |
|
self.top_db = top_db |
|
self.audio = None |
|
|
|
def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None): |
|
"""Load audio. |
|
|
|
Args: |
|
audio_file (str): must be a file on disk due to Librosa limitation or |
|
raw_audio (np.ndarray): audio as numpy array |
|
""" |
|
if audio_file is not None: |
|
self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr) |
|
else: |
|
self.audio = raw_audio |
|
|
|
|
|
if len(self.audio) < self.x_res * self.hop_length: |
|
self.audio = np.concatenate([ |
|
self.audio, |
|
np.zeros((self.x_res * self.hop_length - len(self.audio), )) |
|
]) |
|
|
|
def get_number_of_slices(self) -> int: |
|
"""Get number of slices in audio. |
|
|
|
Returns: |
|
int: number of spectograms audio can be sliced into |
|
""" |
|
return len(self.audio) // self.slice_size |
|
|
|
def get_audio_slice(self, slice: int = 0) -> np.ndarray: |
|
"""Get slice of audio. |
|
|
|
Args: |
|
slice (int): slice number of audio (out of get_number_of_slices()) |
|
|
|
Returns: |
|
np.ndarray: audio as numpy array |
|
""" |
|
return self.audio[self.slice_size * slice:self.slice_size * |
|
(slice + 1)] |
|
|
|
def get_sample_rate(self) -> int: |
|
"""Get sample rate: |
|
|
|
Returns: |
|
int: sample rate of audio |
|
""" |
|
return self.sr |
|
|
|
def audio_slice_to_image(self, slice: int) -> Image.Image: |
|
"""Convert slice of audio to spectrogram. |
|
|
|
Args: |
|
slice (int): slice number of audio to convert (out of get_number_of_slices()) |
|
|
|
Returns: |
|
PIL Image: grayscale image of x_res x y_res |
|
""" |
|
S = librosa.feature.melspectrogram( |
|
y=self.get_audio_slice(slice), |
|
sr=self.sr, |
|
n_fft=self.n_fft, |
|
hop_length=self.hop_length, |
|
n_mels=self.n_mels, |
|
fmax=self.fmax, |
|
) |
|
log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db) |
|
bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + |
|
0.5).astype(np.uint8) |
|
image = Image.fromarray(bytedata) |
|
return image |
|
|
|
def image_to_audio(self, image: Image.Image) -> np.ndarray: |
|
"""Converts spectrogram to audio. |
|
|
|
Args: |
|
image (PIL Image): x_res x y_res grayscale image |
|
|
|
Returns: |
|
audio (np.ndarray): raw audio |
|
""" |
|
bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape( |
|
(image.height, image.width)) |
|
log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db |
|
S = librosa.db_to_power(log_S) |
|
audio = librosa.feature.inverse.mel_to_audio( |
|
S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length) |
|
return audio |
|
|