|
from io import BytesIO |
|
import streamlit as st |
|
import soundfile as sf |
|
from librosa.util import normalize |
|
from librosa.beat import beat_track |
|
|
|
from audiodiffusion import AudioDiffusion |
|
|
|
if __name__ == "__main__": |
|
st.header("Audio Diffusion") |
|
st.markdown("Generate audio using Huggingface diffusers.\ |
|
This takes about 20 minutes without a GPU, so why not make yourself a \ |
|
cup of tea in the meantime? (Or try the teticio/audio-diffusion-ddim-256 \ |
|
model which is faster.)") |
|
|
|
model_id = st.selectbox("Model", [ |
|
"teticio/audio-diffusion-256", "teticio/audio-diffusion-breaks-256", |
|
"teticio/audio-diffusion-instrumental-hiphop-256", |
|
"teticio/audio-diffusion-ddim-256" |
|
]) |
|
audio_diffusion = AudioDiffusion(model_id=model_id) |
|
|
|
if st.button("Generate"): |
|
st.markdown("Generating...") |
|
image, (sample_rate, |
|
audio) = audio_diffusion.generate_spectrogram_and_audio() |
|
st.image(image, caption="Mel spectrogram") |
|
buffer = BytesIO() |
|
sf.write(buffer, normalize(audio), sample_rate, format="WAV") |
|
st.audio(buffer, format="audio/wav") |
|
|
|
audio = AudioDiffusion.loop_it(audio, sample_rate) |
|
if audio is not None: |
|
st.markdown("Loop") |
|
buffer = BytesIO() |
|
sf.write(buffer, normalize(audio), sample_rate, format="WAV") |
|
st.audio(buffer, format="audio/wav") |
|
|