Spaces:
Build error
Build error
import pycountry | |
import os | |
import csv | |
import random | |
import pandas as pd | |
import numpy as np | |
import gradio as gr | |
from collections import Counter | |
from article import ARTICLE | |
from utils import * | |
import matplotlib.pyplot as plt | |
import scipy.io.wavfile as wavf | |
from huggingface_hub import Repository, upload_file | |
from inference import make_inference | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
NUMBER_DIR = './number' | |
number_files = [f.name for f in os.scandir(NUMBER_DIR)] | |
DEFAULT_LIST_OF_COUNTRIES = [country.name for country in pycountry.countries] | |
DATASET_REPO_URL = "https://huggingface.co./datasets/chrisjay/crowd-speech-africa" | |
EMAILS_REPO_URL="https://huggingface.co./datasets/chrisjay/african-digits-recording-sprint-email" | |
REPOSITORY_DIR = "data" | |
LOCAL_DIR = 'data_local' | |
os.makedirs(LOCAL_DIR,exist_ok=True) | |
#DEFAULT_LANGS = {'Igbo':'ibo','Yoruba':'yor','Hausa':'hau'} | |
GENDER = ['Choose Gender','Male','Female','Other','Prefer not to say'] | |
#------------------Work on Languages-------------------- | |
DEFAULT_LANGS = {} | |
languages = read_json_lines('clean_languages.json') | |
languages_lower=[l for l in languages] | |
_ = [DEFAULT_LANGS.update({l['full'].lower():l['id'].lower()}) for l in languages_lower] | |
#_ = [DEFAULT_LANGS.update({l_other.lower():[l['id'].lower()]}) for l in languages_lower for l_other in l['others'] if l_other.lower()!=l['full'].lower()] | |
#------------------Work on Languages-------------------- | |
repo = Repository( | |
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
repo.git_pull() | |
with open('app.css','r') as f: | |
BLOCK_CSS = f.read() | |
def save_record(language,text,record,number,age,gender,accent,number_history,current_number,country,email,done_recording): | |
# set default | |
number_history = number_history if number_history is not None else [0] | |
current_number = current_number if current_number is not None else 0 | |
done_recording = done_recording if done_recording is not None else False | |
#---- | |
# Save text and its corresponding record to flag | |
speaker_metadata={} | |
speaker_metadata['gender'] = gender if gender!=GENDER[0] else '' | |
speaker_metadata['age'] = age if age !='' else '' | |
speaker_metadata['accent'] = accent if accent!='' else '' | |
default_record = None | |
if not done_recording: | |
if language!=None and language!='Choose language' and record is not None and number is not None: | |
language = language.lower() | |
lang_id = DEFAULT_LANGS[language] | |
text =text.strip() | |
# Write audio to file | |
audio_name = get_unique_name() | |
SAVE_FILE_DIR = os.path.join(LOCAL_DIR,audio_name) | |
os.makedirs(SAVE_FILE_DIR,exist_ok=True) | |
audio_output_filename = os.path.join(SAVE_FILE_DIR,'audio.wav') | |
wavf.write(audio_output_filename,record[0],record[1]) | |
# Write metadata.json to file | |
json_file_path = os.path.join(SAVE_FILE_DIR,'metadata.jsonl') | |
metadata= {'id':audio_name,'file_name':'audio.wav', | |
'language_name':language,'language_id':lang_id, | |
'number':current_number, 'text':text,'frequency':record[0], | |
'age': speaker_metadata['age'],'gender': speaker_metadata['gender'], | |
'accent': speaker_metadata['accent'], | |
'country':country | |
} | |
dump_json(metadata,json_file_path) | |
# Simply upload the audio file and metadata using the hub's upload_file | |
# Upload the audio | |
repo_audio_path = os.path.join(REPOSITORY_DIR,os.path.join(audio_name,'audio.wav')) | |
_ = upload_file(path_or_fileobj = audio_output_filename, | |
path_in_repo =repo_audio_path, | |
repo_id='chrisjay/crowd-speech-africa', | |
repo_type='dataset', | |
token=HF_TOKEN | |
) | |
# Upload the metadata | |
repo_json_path = os.path.join(REPOSITORY_DIR,os.path.join(audio_name,'metadata.jsonl')) | |
_ = upload_file(path_or_fileobj = json_file_path, | |
path_in_repo =repo_json_path, | |
repo_id='chrisjay/crowd-speech-africa', | |
repo_type='dataset', | |
token=HF_TOKEN | |
) | |
output = f'Recording successfully saved! On to the next one...' | |
# Choose the next number | |
number_history.append(current_number) | |
number_choices = [num for num in [i for i in range(10)] if num not in number_history] | |
if number_choices!=[]: | |
next_number = random.choice(number_choices) | |
next_number_image = f'number/{next_number}.jpg' | |
else: | |
email_metadata_name = get_unique_name() | |
EMAIL_SAVE_FILE = os.path.join(LOCAL_DIR,f"{email_metadata_name}.json") | |
# Write metadata.json to file | |
email_metadata = {'id':email_metadata_name,'email':email, | |
'language_name':language,'language_id':lang_id, | |
'age': speaker_metadata['age'],'gender': speaker_metadata['gender'], | |
'accent': speaker_metadata['accent'], | |
'country':country | |
} | |
dump_json(email_metadata,EMAIL_SAVE_FILE) | |
# Upload the metadata | |
repo_json_path = os.path.join('emails',f"{email_metadata_name}.json") | |
_ = upload_file(path_or_fileobj = EMAIL_SAVE_FILE, | |
path_in_repo =repo_json_path, | |
repo_id='chrisjay/african-digits-recording-sprint-email', | |
repo_type='dataset', | |
token=HF_TOKEN | |
) | |
# Delete the email from local repo | |
if os.path.exists(EMAIL_SAVE_FILE): | |
os.remove(EMAIL_SAVE_FILE) | |
#------------------- | |
done_recording=True | |
next_number = 0 # the default number | |
next_number_image = f'number/best.gif' | |
output = "You have finished all recording! You can reload to start again." | |
output_string = "<html> <body> <div class='output' style='color:green; font-size:13px'>"+output+"</div> </body> </html>" | |
return output_string,next_number_image,number_history,next_number,done_recording,default_record | |
if number is None: | |
output = "Number must be specified!" | |
if record is None: | |
output="No recording found!" | |
if language is None or language=='Choose language': | |
output = 'Language must be specified!' | |
output_string = "<html> <body> <div class='output' style='color:green; font-size:13px'>"+output+"</div> </body> </html>" | |
# return output_string, previous image and state | |
return output_string, number,number_history,current_number,done_recording,default_record | |
else: | |
# Stop submitting recording (best.gif is displaying) | |
output = '🙌 You have finished all recording! Thank You. You can reload to start again (maybe in another language).' | |
output_string = "<div class='finished'>"+output+"</div>" | |
next_number = 0 # the default number | |
next_number_image = f'number/best.gif' | |
return output_string,next_number_image,number_history,next_number,done_recording,default_record | |
def get_metadata_json(path): | |
try: | |
return read_json_lines(path)[0] | |
except Exception: | |
return [] | |
def plot_bar(value,name,x_name,y_name,title): | |
fig, ax = plt.subplots(figsize=(10,4),tight_layout=True) | |
ax.set(xlabel=x_name, ylabel=y_name,title=title) | |
ax.barh(name, value) | |
return ax.figure | |
def get_metadata_of_dataset(): | |
repo.git_pull() | |
REPOSITORY_DATA_DIR = os.path.join(REPOSITORY_DIR,'data') | |
repo_recordings = [os.path.join(REPOSITORY_DATA_DIR,f.name) for f in os.scandir(REPOSITORY_DATA_DIR)] if os.path.isdir(REPOSITORY_DATA_DIR) else [] | |
audio_repo = [os.path.join(f,'audio.wav') for f in repo_recordings] | |
audio_repo = [a.replace('data/data/','https://huggingface.co./datasets/chrisjay/crowd-speech-africa/resolve/main/data/') for a in audio_repo] | |
metadata_all = [get_metadata_json(os.path.join(f,'metadata.jsonl')) for f in repo_recordings] | |
metadata_all = [m for m in metadata_all if m!=[]] | |
return metadata_all | |
def display_records(): | |
repo.git_pull() | |
REPOSITORY_DATA_DIR = os.path.join(REPOSITORY_DIR,'data') | |
repo_recordings = [os.path.join(REPOSITORY_DATA_DIR,f.name) for f in os.scandir(REPOSITORY_DATA_DIR)] if os.path.isdir(REPOSITORY_DATA_DIR) else [] | |
audio_repo = [os.path.join(f,'audio.wav') for f in repo_recordings] | |
audio_repo = [a.replace('data/data/','https://huggingface.co./datasets/chrisjay/crowd-speech-africa/resolve/main/data/') for a in audio_repo] | |
metadata_repo = [read_json_lines(os.path.join(f,'metadata.jsonl'))[0] for f in repo_recordings] | |
audios_all = audio_repo | |
metadata_all = metadata_repo | |
langs=[m['language_name'] for m in metadata_all] | |
audios = [a for a in audios_all] | |
texts = [m['text'] for m in metadata_all] | |
numbers = [m['number'] for m in metadata_all] | |
html = f"""<div class="infoPoint"> | |
<h1> Hooray! We have collected {len(metadata_all)} samples!</h1> | |
<table style="width:100%; text-align:center"> | |
<tr> | |
<th>language</th> | |
<th>audio</th> | |
<th>number</th> | |
<th>text</th> | |
</tr>""" | |
for lang, audio, text,num_ in zip(langs,audios,texts,numbers): | |
html+= f"""<tr> | |
<td>{lang}</td> | |
<td><audio controls><source src="{audio}" type="audio/wav"> </audio></td> | |
<td>{num_}</td> | |
<td>{text}</td> | |
</tr>""" | |
html+="</table></div>" | |
return html | |
# NUMBERS = [{'image':os.path.join(NUMBER_DIR,f),'number':int(f.split('.')[0])} for f in number_files] | |
markdown = """<div style="text-align: center"><p style="font-size: 40px"> Africa Crowdsource Speech </p> <br> | |
This is a platform to contribute to your African language by recording your voice </div>""" | |
markdown=""" | |
# 🌍 African Digits Recording Sprint | |
Existing speech recognition systems do not support ANY African languages, excluding African speakers from voice-enabled devices. Our voice is our identity! | |
The purpose of this project is to show the effectiveness of community-based crowd-sourcing dataset curation in the development of technologies for African languages. | |
We start with a simple digits dataset for African languages through crowd-sourcing. You can easily teach a model to recognise numbers in your language using this dataset. | |
""" | |
record_markdown = """ | |
> Record numbers 0-9 in your African language. | |
1. Fill in your email. This is completely optional. We need this to track your progress for the prize. | |
__Note:__ You should record all numbers shown till the end. It does not count if you stop mid-way. | |
2. Choose your African language | |
3. Fill in the speaker metadata (age, gender, accent). This is optional but important to build better speech models. | |
4. You will see the image of a number __(this is the number you will record)__. | |
5. Fill in the word of that number (optional). You can leave this blank. | |
6. Click record and say the number in your African language. | |
7. Click ‘Submit’. It will save your record and go to the next number. | |
8. Repeat 4-7 | |
9. Leave a ❤ in the Space, if you found it fun. | |
> Please Note: Record as many as times as possible (minimum of 20 and maximum of 200). | |
""" | |
PLOTS_FOR_GRADIO = [] | |
FUNCTIONS_FOR_GRADIO = [] | |
# Interface design begins | |
block = gr.Blocks(css=BLOCK_CSS) | |
with block: | |
gr.Markdown(markdown) | |
with gr.Tabs(): | |
with gr.TabItem('Record'): | |
gr.Markdown(record_markdown) | |
email = gr.inputs.Textbox(placeholder='your email',label="Email (Your email is not made public. We need it to consider you for the prize.)",default='') | |
with gr.Row(): | |
language = gr.inputs.Dropdown(choices = sorted([lang_.title() for lang_ in list(DEFAULT_LANGS.keys())]),label="Choose language",default="Choose language") | |
age = gr.inputs.Textbox(placeholder='e.g. 21',label="Your age (optional)",default='') | |
gender = gr.inputs.Dropdown(choices=GENDER, type="value", default=None, label="Gender (optional)") | |
accent = gr.inputs.Textbox(label="Accent (optional)",default='') | |
country = gr.Dropdown(choices=[''] + sorted(DEFAULT_LIST_OF_COUNTRIES),type='value',default=None,label="Country you are recording from (optional)") | |
number = gr.Image('number/0.jpg',image_mode="L") | |
text = gr.inputs.Textbox(placeholder='e.g. `one` is `otu` in Igbo or `ọkan` in Yoruba',label="How is the number called in your language (optional)") | |
record = gr.Audio(source="microphone",label='Record your voice') | |
output_result = gr.outputs.HTML() | |
state = gr.Variable() | |
current_number = gr.Variable() | |
done_recording = gr.Variable() # Signifies when to stop submitting records even if `submit`` is clicked | |
save = gr.Button("Submit") | |
save.click(save_record, inputs=[language,text,record,number,age,gender,accent,state,current_number,country,email,done_recording],outputs=[output_result,number,state,current_number,done_recording,record]) | |
with gr.TabItem('Dataset') as listen_tab: | |
gr.Markdown("Statistics on the recordings contributed. You can find the dataset <a href='https://huggingface.co./datasets/chrisjay/crowd-speech-africa' target='blank'>here</a>.") | |
display_html = gr.HTML("""<div style="color: green"> | |
<p> ⌛ Please wait. Loading dashboard... </p> | |
</div> | |
""") | |
plot = gr.Plot(type="matplotlib") | |
metadata_all = get_metadata_of_dataset() | |
def show_records(): | |
global PLOTS_FOR_GRADIO | |
global FUNCTIONS_FOR_GRADIO | |
assert len(PLOTS_FOR_GRADIO) == len(FUNCTIONS_FOR_GRADIO), f"Function output and gradio plots must be the same length! \n Found: function => {len(FUNCTIONS_FOR_GRADIO)} and gradio plots => {len(PLOTS_FOR_GRADIO)}." | |
langs=[m['language_name'] for m in metadata_all] | |
all_genders = [m['gender'] for m in metadata_all | |
] | |
lang_dict = Counter(langs) | |
lang_dict.update({'All others':0}) | |
all_langs = list(lang_dict.keys()) | |
langs_count = [lang_dict[k] for k in all_langs] | |
plt_ = plot_bar(langs_count,all_langs,'Number of audio samples',"Language",'Distribution of audio samples over languages') | |
html = f"""<div class="infoPoint"> | |
<h1> Hooray! We have collected {len(metadata_all)} samples!</h1> | |
""" | |
return [html,plt_]+FUNCTIONS_FOR_GRADIO | |
languages = list(Counter([m['language_name'] for m in metadata_all]).keys()) | |
for language in languages: | |
with gr.Row() as row_lang: | |
metadata_for_language = [m for m in metadata_all if m['language_name']==language] | |
gender_for_language = [m['gender'] for m in metadata_for_language] | |
digits_for_language = [m['number'] for m in metadata_for_language] | |
gender_for_language = [g if g!="" else 'Not given' for g in gender_for_language] | |
digits_dict = Counter(digits_for_language) | |
gender_dict = Counter(gender_for_language) | |
digits_name_for_language = list(digits_dict.keys()) | |
digits_count_for_language = [digits_dict[k] for k in digits_name_for_language] | |
gender_name_for_language = list(gender_dict.keys()) | |
gender_count_for_language = [gender_dict[k] for k in gender_name_for_language] | |
plot_digits = gr.Plot(type="matplotlib") | |
plot_gender = gr.Plot(type="matplotlib") | |
PLOTS_FOR_GRADIO.append(plot_digits) | |
PLOTS_FOR_GRADIO.append(plot_gender) | |
def plot_metadata_for_language(): | |
plt_digits = plot_bar(digits_count_for_language,digits_name_for_language,'Number of audio samples',"Digit",f"Distribution of audio samples over digits for {language.upper()} ") | |
plt_gender = plot_bar(gender_count_for_language,gender_name_for_language,'Number of audio samples',"Gender",f"Distribution of audio samples over gender for {language.upper()}") | |
return plt_digits, plt_gender | |
output_digits,ouput_gender = plot_metadata_for_language() | |
FUNCTIONS_FOR_GRADIO.append(output_digits) | |
FUNCTIONS_FOR_GRADIO.append(ouput_gender) | |
#listen = gr.Button("Listen") | |
listen_tab.select(show_records,inputs=[],outputs=[display_html,plot]+PLOTS_FOR_GRADIO) | |
with gr.TabItem('Model') as listen_tab: | |
# Dropdown to choose a language from any of the 6 | |
# When you choose, it will load the correponding model | |
# And then one can record a voice and get the model prediction | |
#Igbo - ibo | |
#Oshiwambo - kua | |
#Yoruba - yor | |
#Oromo (although note all of these audios are from female) - gax | |
#Shona (all male) - sna | |
#Rundi (all male) - run | |
gr.Markdown("""Here we are testing the models which we trained on the dataset collected. | |
Choose a language from the dropdown, record your voice and select `See model's prediction`.""") | |
language_choice = gr.Dropdown(["Choose language","Igbo", "Oshiwambo", "Yoruba","Oromo","Shona","Rundi","MULTILINGUAL"],label="Choose language",default="Choose language") | |
input_audio = gr.Audio(source="microphone",label='Record your voice',type='filepath') | |
output_pred = gr.Label(num_top_classes=5) | |
submit = gr.Button("See model's prediction") | |
submit.click(make_inference, inputs = [language_choice,input_audio], outputs = [output_pred]) | |
gr.Markdown(ARTICLE) | |
block.launch() |