Spaces:
Runtime error
Runtime error
from typing import List, Tuple, Dict, Generator | |
from langchain.llms import OpenAI | |
import gradio as gr | |
model_name = "gpt-3.5-turbo" | |
LLM = OpenAI(model_name=model_name, temperature=0.1) | |
def create_history_messages(history: List[Tuple[str, str]]) -> List[dict]: | |
history_messages = [{"role": "user", "content": m[0]} for m in history] | |
history_messages.extend([{"role": "assistant", "content": m[1]} for m in history]) | |
return history_messages | |
def create_formatted_history(history_messages: List[dict]) -> List[Tuple[str, str]]: | |
formatted_history = [] | |
user_messages = [] | |
assistant_messages = [] | |
for message in history_messages: | |
if message["role"] == "user": | |
user_messages.append(message["content"]) | |
elif message["role"] == "assistant": | |
assistant_messages.append(message["content"]) | |
if user_messages and assistant_messages: | |
formatted_history.append( | |
("".join(user_messages), "".join(assistant_messages)) | |
) | |
user_messages = [] | |
assistant_messages = [] | |
# append any remaining messages | |
if user_messages: | |
formatted_history.append(("".join(user_messages), None)) | |
elif assistant_messages: | |
formatted_history.append((None, "".join(assistant_messages))) | |
return formatted_history | |
def chat( | |
message: str, state: List[Dict[str, str]], client = LLM.client | |
) -> Generator[Tuple[List[Tuple[str, str]], List[Dict[str, str]]], None, None]: | |
history_messages = state | |
if history_messages == None: | |
history_messages = [] | |
history_messages.append({"role": "system", "content": "ChatDefense is available to assist you with your legal questions."}) | |
history_messages.append({"role": "user", "content": message}) | |
# We have no content for the assistant's response yet but we will update this: | |
history_messages.append({"role": "assistant", "content": ""}) | |
response_message = "" | |
chat_generator = client.create( | |
messages=history_messages, stream=True, model=model_name | |
) | |
for chunk in chat_generator: | |
if "choices" in chunk: | |
for choice in chunk["choices"]: | |
if "delta" in choice and "content" in choice["delta"]: | |
new_token = choice["delta"]["content"] | |
# Add the latest token: | |
response_message += new_token | |
# Update the assistant's response in our model: | |
history_messages[-1]["content"] = response_message | |
if "finish_reason" in choice and choice["finish_reason"] == "stop": | |
break | |
formatted_history = create_formatted_history(history_messages) | |
yield formatted_history, history_messages | |
chatbot = gr.Chatbot(label="Chat").style(color_map=("yellow", "purple")) | |
iface = gr.Interface( | |
fn=chat, | |
inputs=[ | |
gr.Textbox(placeholder="Hello there ๐๐ผ ", label="Message"), | |
"state", | |
], | |
outputs=[chatbot, "state"], | |
allow_flagging="never", | |
) | |
iface.queue().launch() |