brunorosilva commited on
Commit
00c3763
1 Parent(s): c79bec5

docs: add examples

Browse files
Files changed (2) hide show
  1. .gitignore +0 -5
  2. README.md +31 -11
.gitignore CHANGED
@@ -105,8 +105,3 @@ ENV/
105
  .vscode/
106
  .idea/
107
  __MACOSX/
108
-
109
- # random imgs
110
- *.jpeg
111
- *.jpg
112
- *.png
 
105
  .vscode/
106
  .idea/
107
  __MACOSX/
 
 
 
 
 
README.md CHANGED
@@ -1,7 +1,9 @@
1
- # Image-to-Art Search
2
 
3
  This project fine-tunes a Vision Transformer (ViT) model, pre-trained with "google/vit-base-patch32-224-in21k" weights and fine tuned with the style of [ArtButMakeItSports](https://www.instagram.com/artbutmakeitsports/), to perform image-to-art search across 81k artworks made available by [WikiArt](https://wikiart.org/).
4
 
 
 
5
  ## Table of Contents
6
 
7
  - [Overview](#overview)
@@ -20,20 +22,20 @@ This project leverages the Vision Transformer (ViT) model architecture for the t
20
  ## Installation
21
 
22
  1. Clone the repository:
23
- ```sh
24
- git clone https://github.com/brunorosilva/img2art-search.git
25
- cd img2art-search
26
- ```
27
 
28
  2. Install poetry:
29
- ```sh
30
- pip install poetry
31
- ```
32
 
33
  3. Install using poetry:
34
- ```sh
35
- poetry install
36
- ```
37
 
38
  ## How it works
39
 
@@ -41,6 +43,8 @@ This project leverages the Vision Transformer (ViT) model architecture for the t
41
 
42
  1. Download images from the [ArtButMakeItSports](https://www.instagram.com/artbutmakeitsports/) Instagram account.
43
  2. Organize the images into appropriate directories for training and validation.
 
 
44
 
45
  ### Training
46
 
@@ -88,6 +92,22 @@ The training script fine-tunes the ViT model on the prepared dataset. Key steps
88
  The recommended method to get results is to use [gradio](https://www.gradio.app/) as an interface by running `make viz`. This will open a server and you can use some image you want to search or even use your webcam to get top 4 search results.
89
 
90
  ### Examples
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  ## Contributing
93
  There are three topics I'd appreciate help with:
 
1
+ # Image-to-Art Search 🔍
2
 
3
  This project fine-tunes a Vision Transformer (ViT) model, pre-trained with "google/vit-base-patch32-224-in21k" weights and fine tuned with the style of [ArtButMakeItSports](https://www.instagram.com/artbutmakeitsports/), to perform image-to-art search across 81k artworks made available by [WikiArt](https://wikiart.org/).
4
 
5
+ ![horse](examples/horse.png)
6
+
7
  ## Table of Contents
8
 
9
  - [Overview](#overview)
 
22
  ## Installation
23
 
24
  1. Clone the repository:
25
+ ```sh
26
+ git clone https://github.com/brunorosilva/img2art-search.git
27
+ cd img2art-search
28
+ ```
29
 
30
  2. Install poetry:
31
+ ```sh
32
+ pip install poetry
33
+ ```
34
 
35
  3. Install using poetry:
36
+ ```sh
37
+ poetry install
38
+ ```
39
 
40
  ## How it works
41
 
 
43
 
44
  1. Download images from the [ArtButMakeItSports](https://www.instagram.com/artbutmakeitsports/) Instagram account.
45
  2. Organize the images into appropriate directories for training and validation.
46
+ 3. Get a fine tuned model
47
+ 4. Create the gallery using WikiArt
48
 
49
  ### Training
50
 
 
92
  The recommended method to get results is to use [gradio](https://www.gradio.app/) as an interface by running `make viz`. This will open a server and you can use some image you want to search or even use your webcam to get top 4 search results.
93
 
94
  ### Examples
95
+ Search for contextual similarity
96
+ ![field](examples/field.png)
97
+
98
+ Search for shapes similarity
99
+ ![basket](examples/basketball.png)
100
+
101
+ Search for expression similarity (yep, that's me)
102
+ ![serious_face](examples/serious_face.png)
103
+
104
+ Search for pose similarity
105
+ ![lawyer](examples/lawyer.png)
106
+
107
+ Search for an object
108
+ ![horse](examples/horse.png)
109
+
110
+
111
 
112
  ## Contributing
113
  There are three topics I'd appreciate help with: