import base64 import hashlib import io import os from pathlib import Path from threading import Thread from typing import Iterator, Optional, List, Union import gradio as gr import spaces import torch from PIL import Image from pydantic import BaseModel from qwen_vl_utils import process_vision_info from swift.llm import ( ModelType, get_model_tokenizer, get_default_template_type, get_template, inference, inference_stream, ) from transformers import ( Qwen2VLForConditionalGeneration, PreTrainedTokenizer, Qwen2VLProcessor, TextIteratorStreamer, AutoTokenizer, ) MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths This Space demonstrates the reasoning paths optimization (RPO) framework with a Llama 3 model with 8B parameters fine-tuned for math reasoning. Feel free to play with it, or duplicate to run generations without a queue! 🔎 For more details about the RPO training framework, check out the [paper](https://arxiv.org/abs/2410.10858) or [code](https://github.com/DAMO-NLP-SG/reasoning-paths-optimization). """ LICENSE = """

--- As a derivate work of [Llama-3-8b-chat](https://huggingface.co./meta-llama/Meta-Llama-3-8B) by Meta, this demo is governed by the original [license](https://huggingface.co./meta-llama/Meta-Llama-3-8B/blob/main/LICENSE) and [acceptable use policy](https://huggingface.co./meta-llama/Meta-Llama-3-8B/blob/main/USE_POLICY.md). """ def convert_image_to_text(image: Image) -> str: # This is also how OpenAI encodes images: https://platform.openai.com/docs/guides/vision with io.BytesIO() as output: image.save(output, format="PNG") data = output.getvalue() return base64.b64encode(data).decode("utf-8") def convert_text_to_image(text: str) -> Image: data = base64.b64decode(text.encode("utf-8")) return Image.open(io.BytesIO(data)) def save_image(image: Image.Image, folder: str) -> str: image_hash = hashlib.md5(image.tobytes()).hexdigest() path = Path(folder, f"{image_hash}.png") path.parent.mkdir(exist_ok=True, parents=True) if not path.exists(): image.save(path) return str(path) def resize_image(image: Image.Image, max_size: int) -> Image.Image: # Same as modeling.py resize_image width, height = image.size if width <= max_size and height <= max_size: return image if width > height: new_width = max_size new_height = round(height * max_size / width) else: new_height = max_size new_width = round(width * max_size / height) return image.resize((new_width, new_height), Image.LANCZOS) class EvalModel(BaseModel, arbitrary_types_allowed=True): engine: str timeout: int = 60 temperature: float = 0.0 max_output_tokens: int = 512 def run(self, inputs: List[Union[str, Image.Image]]) -> str: raise NotImplementedError def run_many(self, inputs: List[Union[str, Image.Image]], num: int) -> List[str]: raise NotImplementedError class SwiftQwenModel(EvalModel): # https://github.com/modelscope/ms-swift/blob/main/docs/source_en/Multi-Modal/qwen2-vl-best-practice.md path: str = "" model: Optional[Qwen2VLForConditionalGeneration] = None tokenizer: Optional[PreTrainedTokenizer] = None engine: str = ModelType.qwen2_vl_7b_instruct image_size: int = 768 image_dir: str = "data/qwen_images" def load(self): if self.model is None or self.tokenizer is None: self.model, self.tokenizer = get_model_tokenizer( self.engine, torch.bfloat16, model_kwargs={"device_map": "auto"}, model_id_or_path=self.path or None, ) def run(self, inputs: List[Union[str, Image.Image]]) -> str: self.load() template_type = get_default_template_type(self.engine) self.model.generation_config.max_new_tokens = self.max_output_tokens template = get_template(template_type, self.tokenizer) text = "\n\n".join([x for x in inputs if isinstance(x, str)]) content = [] for x in inputs: if isinstance(x, Image.Image): path = save_image(resize_image(x, self.image_size), self.image_dir) content.append(f"{path}") content.append(text) query = "".join(content) response, history = inference(self.model, template, query) return response def run_stream(self, inputs: List[Union[str, Image.Image]]) -> Iterator[str]: self.load() template_type = get_default_template_type(self.engine) self.model.generation_config.max_new_tokens = self.max_output_tokens template = get_template(template_type, self.tokenizer) text = "\n\n".join([x for x in inputs if isinstance(x, str)]) content = [] for x in inputs: if isinstance(x, Image.Image): path = save_image(resize_image(x, self.image_size), self.image_dir) content.append(f"{path}") content.append(text) query = "".join(content) generator = inference_stream(self.model, template, query) print_idx = 0 print(f"query: {query}\nresponse: ", end="") for response, history in generator: delta = response[print_idx:] print(delta, end="", flush=True) print_idx = len(response) yield delta class QwenModel(EvalModel): path: str = "models/qwen" engine: str = "Qwen/Qwen2-VL-7B-Instruct" model: Optional[Qwen2VLForConditionalGeneration] = None processor: Optional[Qwen2VLProcessor] = None tokenizer: Optional[AutoTokenizer] = None device: str = "cuda" image_size: int = 768 lora_path: str = "" def load(self): if self.model is None: path = self.path if os.path.exists(self.path) else self.engine print(dict(load_path=path)) # noinspection PyTypeChecker self.model = Qwen2VLForConditionalGeneration.from_pretrained( path, torch_dtype="auto", device_map="auto" ) self.tokenizer = AutoTokenizer.from_pretrained(self.engine) if self.lora_path: print("Loading LORA from", self.lora_path) self.model.load_adapter(self.lora_path) self.model = self.model.to(self.device).eval() self.processor = Qwen2VLProcessor.from_pretrained(self.engine) torch.manual_seed(0) torch.cuda.manual_seed_all(0) def make_messages(self, inputs: List[Union[str, Image.Image]]) -> List[dict]: text = "\n\n".join([x for x in inputs if isinstance(x, str)]) content = [ dict( type="image", image=f"data:image;base64,{convert_image_to_text(resize_image(x, self.image_size))}", ) for x in inputs if isinstance(x, Image.Image) ] content.append(dict(type="text", text=text)) return [dict(role="user", content=content)] def run(self, inputs: List[Union[str, Image.Image]]) -> str: self.load() messages = self.make_messages(inputs) text = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) # noinspection PyTypeChecker model_inputs = self.processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to(self.device) with torch.inference_mode(): generated_ids = self.model.generate( **model_inputs, max_new_tokens=self.max_output_tokens ) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(model_inputs.input_ids, generated_ids) ] output_text = self.processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False, ) return output_text[0] def run_stream(self, inputs: List[Union[str, Image.Image]]) -> Iterator[str]: self.load() messages = self.make_messages(inputs) text = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) # noinspection PyTypeChecker model_inputs = self.processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to(self.device) streamer = TextIteratorStreamer( self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True, ) generate_kwargs = dict( **model_inputs, streamer=streamer, max_new_tokens=self.max_output_tokens, ) t = Thread(target=self.model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): model = QwenModel() model.load() @spaces.GPU def generate( message: str, chat_history: list[dict], system_prompt: str = "", max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: for text in model.run_stream([message]): yield text chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ [ "Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?" ], [ "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?" ], [ "Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?" ], ], cache_examples=False, type="messages", ) with gr.Blocks(css_paths="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button" ) chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()