chheplo commited on
Commit
d2c3421
·
verified ·
1 Parent(s): a1adb7f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +131 -48
app.py CHANGED
@@ -1,63 +1,146 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
 
 
 
 
 
6
  """
7
- client = InferenceClient("chheplo/sft_8b_2_llama3")
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
 
 
 
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
 
1
  import gradio as gr
2
+ import os
3
+ import spaces
4
+ from transformers import GemmaTokenizer, AutoModelForCausalLM
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
+ from threading import Thread
7
 
8
+ # Set an environment variable
9
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
10
+
11
+
12
+ DESCRIPTION = '''
13
+ <div>
14
+ <h1 style="text-align: center;">Meta Llama3 8B</h1>
15
+ <p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
16
+ <p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
17
+ <p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
18
+ </div>
19
+ '''
20
+
21
+ LICENSE = """
22
+ <p/>
23
+
24
+ ---
25
+ Built with Meta Llama 3
26
  """
27
+
28
+ PLACEHOLDER = """
29
+ <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
30
+ <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
31
+ <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
32
+ <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
33
+ </div>
34
  """
 
35
 
36
 
37
+ css = """
38
+ h1 {
39
+ text-align: center;
40
+ display: block;
41
+ }
 
 
 
 
42
 
43
+ #duplicate-button {
44
+ margin: auto;
45
+ color: white;
46
+ background: #1565c0;
47
+ border-radius: 100vh;
48
+ }
49
+ """
50
 
51
+ # Load the tokenizer and model
52
+ tokenizer = AutoTokenizer.from_pretrained("chheplo/sft_8b_2_llama3")
53
+ model = AutoModelForCausalLM.from_pretrained("chheplo/sft_8b_2_llama3", device_map="auto") # to("cuda:0")
54
+ terminators = [
55
+ tokenizer.eos_token_id,
56
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
57
+ ]
58
 
59
+ @spaces.GPU(duration=120)
60
+ def chat_llama3_8b(message: str,
61
+ history: list,
62
+ temperature: float,
63
+ max_new_tokens: int
64
+ ) -> str:
65
+ """
66
+ Generate a streaming response using the llama3-8b model.
67
+ Args:
68
+ message (str): The input message.
69
+ history (list): The conversation history used by ChatInterface.
70
+ temperature (float): The temperature for generating the response.
71
+ max_new_tokens (int): The maximum number of new tokens to generate.
72
+ Returns:
73
+ str: The generated response.
74
+ """
75
+ conversation = []
76
+ for user, assistant in history:
77
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
78
+ conversation.append({"role": "user", "content": message})
79
 
80
+ input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
81
+
82
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
 
 
 
 
 
83
 
84
+ generate_kwargs = dict(
85
+ input_ids= input_ids,
86
+ streamer=streamer,
87
+ max_new_tokens=max_new_tokens,
88
+ do_sample=True,
89
+ temperature=temperature,
90
+ eos_token_id=terminators,
91
+ )
92
+ # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
93
+ if temperature == 0:
94
+ generate_kwargs['do_sample'] = False
95
+
96
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
97
+ t.start()
98
 
99
+ outputs = []
100
+ for text in streamer:
101
+ outputs.append(text)
102
+ #print(outputs)
103
+ yield "".join(outputs)
104
+
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
+ # Gradio block
107
+ chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
108
 
109
+ with gr.Blocks(fill_height=True, css=css) as demo:
110
+
111
+ gr.Markdown(DESCRIPTION)
112
+ gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
113
+ gr.ChatInterface(
114
+ fn=chat_llama3_8b,
115
+ chatbot=chatbot,
116
+ fill_height=True,
117
+ additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
118
+ additional_inputs=[
119
+ gr.Slider(minimum=0,
120
+ maximum=1,
121
+ step=0.1,
122
+ value=0.95,
123
+ label="Temperature",
124
+ render=False),
125
+ gr.Slider(minimum=128,
126
+ maximum=4096,
127
+ step=1,
128
+ value=512,
129
+ label="Max new tokens",
130
+ render=False ),
131
+ ],
132
+ examples=[
133
+ ['How to setup a human base on Mars? Give short answer.'],
134
+ ['Explain theory of relativity to me like I’m 8 years old.'],
135
+ ['What is 9,000 * 9,000?'],
136
+ ['Write a pun-filled happy birthday message to my friend Alex.'],
137
+ ['Justify why a penguin might make a good king of the jungle.']
138
+ ],
139
+ cache_examples=False,
140
+ )
141
+
142
+ gr.Markdown(LICENSE)
143
+
144
  if __name__ == "__main__":
145
+ demo.launch()
146
+