Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
import torch.nn.functional as F | |
from transformers import BertTokenizer, GPT2LMHeadModel | |
tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-couplet") | |
model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-couplet") | |
model.eval() | |
def top_k_top_p_filtering( logits, top_k=0, top_p=0.0, filter_value=-float('Inf') ): | |
assert logits.dim() == 1 | |
top_k = min( top_k, logits.size(-1) ) | |
if top_k > 0: | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p > 0.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum( F.softmax(sorted_logits, dim=-1), dim=-1 ) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[indices_to_remove] = filter_value | |
return logits | |
def generate0(input_text): | |
input_ids = [tokenizer.cls_token_id] | |
input_ids.extend( tokenizer.encode(input_text + "-", add_special_tokens=False) ) | |
input_ids = torch.tensor( [input_ids] ) | |
generated = [] | |
for _ in range(100): | |
output = model(input_ids) | |
next_token_logits = output.logits[0, -1, :] | |
next_token_logits[ tokenizer.convert_tokens_to_ids('[UNK]') ] = -float('Inf') | |
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=8, top_p=1) | |
next_token = torch.multinomial( F.softmax(filtered_logits, dim=-1), num_samples=1 ) | |
if next_token == tokenizer.sep_token_id: | |
break | |
generated.append( next_token.item() ) | |
input_ids = torch.cat( (input_ids, next_token.unsqueeze(0)), dim=1 ) | |
return "".join( tokenizer.convert_ids_to_tokens(generated) ) | |
def generate(input_text): | |
result = set() | |
for i in range(5): | |
text = generate0(input_text) | |
result.add(text) | |
return " | ".join( result ) | |
if __name__ == "__main__": | |
gr.Interface( | |
fn=generate, | |
inputs="text", | |
outputs="text" | |
).launch() |