vuman / crypto_analysis.py
chemouda's picture
Update crypto_analysis.py
eeb7819 verified
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import date, timedelta, datetime
import logging
import sys
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
import requests
import re
# Set up logging
logging.basicConfig(level=logging.INFO, stream=sys.stdout,
format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger()
def get_last_date():
return date.today().strftime("%Y-%m-%d")
def get_start_date(interval):
today = date.today()
if interval in ['1d', '1wk', '1mo']:
years_ago = 5
days_ago = 365*years_ago
else:
years_ago = 1
days_ago = 365*years_ago
start_date = today - timedelta(days=days_ago)
return start_date.strftime("%Y-%m-%d")
def fetch_crypto_data(symbol, start_date, end_date, interval='1d'):
try:
crypto = yf.Ticker(f"{symbol}-USD")
data = crypto.history(start=start_date, end=end_date, interval=interval)
if data.empty:
logger.warning(f"No data fetched for {symbol}. Please check the symbol and date range.")
return None
return data
except Exception as e:
logger.warning(f"Error fetching data for {symbol}: {e}")
return None
def calculate_atr(data, period=14):
high = data['High']
low = data['Low']
close = data['Close']
tr1 = high - low
tr2 = abs(high - close.shift())
tr3 = abs(low - close.shift())
tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
atr = tr.rolling(window=period).mean()
return atr
def calculate_supertrend(data, atr_period, multiplier):
hl2 = (data['High'] + data['Low']) / 2
atr = calculate_atr(data, atr_period)
upper_band = hl2 + (multiplier * atr)
lower_band = hl2 - (multiplier * atr)
supertrend = pd.Series(index=data.index, dtype=float)
direction = pd.Series(index=data.index, dtype=int)
for i in range(1, len(data)):
if data['Close'].iloc[i] > upper_band.iloc[i-1]:
direction.iloc[i] = 1
elif data['Close'].iloc[i] < lower_band.iloc[i-1]:
direction.iloc[i] = -1
else:
direction.iloc[i] = direction.iloc[i-1]
if direction.iloc[i] == 1 and lower_band.iloc[i] < lower_band.iloc[i-1]:
lower_band.iloc[i] = lower_band.iloc[i-1]
if direction.iloc[i] == -1 and upper_band.iloc[i] > upper_band.iloc[i-1]:
upper_band.iloc[i] = upper_band.iloc[i-1]
if direction.iloc[i] == 1:
supertrend.iloc[i] = lower_band.iloc[i]
else:
supertrend.iloc[i] = upper_band.iloc[i]
# Generate buy/sell signals
signals = pd.Series(index=data.index, dtype=str)
signals.iloc[0] = ''
for i in range(1, len(data)):
if direction.iloc[i] == 1 and direction.iloc[i-1] == -1:
signals.iloc[i] = 'BUY'
elif direction.iloc[i] == -1 and direction.iloc[i-1] == 1:
signals.iloc[i] = 'SELL'
else:
signals.iloc[i] = ''
return supertrend, signals
def ema(series, period):
return series.ewm(span=period, adjust=False).mean()
def range_size(x, qty, n):
wper = (n * 2) - 1
avrng = ema(abs(x - x.shift(1)), n)
AC = ema(avrng, wper) * qty
return AC
def range_filter(x, rng_, n):
r = rng_
rfilt = pd.Series(index=x.index, dtype=float)
rfilt.iloc[0] = x.iloc[0]
for i in range(1, len(x)):
if x.iloc[i] - r.iloc[i] > rfilt.iloc[i-1]:
rfilt.iloc[i] = x.iloc[i] - r.iloc[i]
elif x.iloc[i] + r.iloc[i] < rfilt.iloc[i-1]:
rfilt.iloc[i] = x.iloc[i] + r.iloc[i]
else:
rfilt.iloc[i] = rfilt.iloc[i-1]
return rfilt
def vumanchu_swing(data, rng_per, rng_qty):
close = data['Close']
r = range_size(close, rng_qty, rng_per)
filt = range_filter(close, r, rng_per)
fdir = pd.Series(index=data.index, dtype=float)
fdir.iloc[0] = 0
for i in range(1, len(data)):
if filt.iloc[i] > filt.iloc[i-1]:
fdir.iloc[i] = 1
elif filt.iloc[i] < filt.iloc[i-1]:
fdir.iloc[i] = -1
else:
fdir.iloc[i] = fdir.iloc[i-1]
upward = (fdir == 1).astype(int)
downward = (fdir == -1).astype(int)
longCond = ((close > filt) & (close > close.shift(1)) & (upward > 0)) | \
((close > filt) & (close < close.shift(1)) & (upward > 0))
shortCond = ((close < filt) & (close < close.shift(1)) & (downward > 0)) | \
((close < filt) & (close > close.shift(1)) & (downward > 0))
CondIni = pd.Series(0, index=data.index)
for i in range(1, len(data)):
if longCond.iloc[i]:
CondIni.iloc[i] = 1
elif shortCond.iloc[i]:
CondIni.iloc[i] = -1
else:
CondIni.iloc[i] = CondIni.iloc[i-1]
signals = pd.Series(index=data.index, dtype=str)
signals.iloc[0] = ''
for i in range(1, len(data)):
if CondIni.iloc[i] == 1 and CondIni.iloc[i-1] == -1:
signals.iloc[i] = 'BUY'
elif CondIni.iloc[i] == -1 and CondIni.iloc[i-1] == 1:
signals.iloc[i] = 'SELL'
else:
signals.iloc[i] = ''
return filt, signals
def analyze_crypto(symbol, start_date, end_date, interval):
data = fetch_crypto_data(symbol, start_date, end_date, interval)
if data is None or len(data) < 100:
logger.warning(f"Insufficient data for {symbol}. Data points: {len(data) if data is not None else 0}")
return None
data['SuperTrend_1x'], data['Signal_1x'] = calculate_supertrend(data, 10, 1)
data['SuperTrend_2x'], data['Signal_2x'] = calculate_supertrend(data, 11, 2)
data['SuperTrend_3x'], data['Signal_3x'] = calculate_supertrend(data, 12, 3)
# VuManchu Swing
swing_period = 20
swing_multiplier = 3.5
data['VuManchu'], data['VuManchu_Signal'] = vumanchu_swing(data, swing_period, swing_multiplier)
return data
def get_top_crypto_symbols():
url = "https://api.coingecko.com/api/v3/coins/markets"
params = {
"vs_currency": "usd",
"order": "market_cap_desc",
"per_page": 100,
"page": 1,
"sparkline": False
}
response = requests.get(url, params=params)
if response.status_code == 200:
data = response.json()
return [coin['symbol'].upper() for coin in data]
else:
logger.error("Failed to fetch top cryptocurrencies")
return []
def get_signals(symbol, start_date, end_date, interval):
data = analyze_crypto(symbol, start_date, end_date, interval)
if data is not None:
if interval == '1d':
signals = data.last('7D')
elif interval == '1wk':
signals = data.last('8W')
else:
signals = data.last('7D') # Default to 1 week for other intervals
signals = signals[['Close', 'Signal_1x', 'Signal_2x', 'Signal_3x', 'VuManchu_Signal']].copy()
signals['Symbol'] = symbol
signals['Date'] = signals.index.date
logger.info(f"Generated signals for {symbol}:\n{signals}")
return signals
return None
def process_batch(symbols, start_date, end_date, interval):
results = []
with ThreadPoolExecutor(max_workers=2) as executor:
future_to_crypto = {executor.submit(get_signals, symbol, start_date, end_date, interval): symbol for symbol in symbols}
for future in as_completed(future_to_crypto):
symbol = future_to_crypto[future]
try:
signals = future.result()
if signals is not None and not signals.empty:
results.append(signals)
else:
logger.warning(f"No signals generated for {symbol}")
except Exception as exc:
logger.error(f'{symbol} generated an exception: {exc}')
return results
def main():
cryptos_input = input("Enter cryptocurrency symbol(s) to analyze (comma-separated) or press Enter for top 100: ").strip().upper()
interval = input("Enter time interval (1d or 1wk): ").lower()
if interval not in ['1d', '1wk']:
logger.warning("Invalid interval. Defaulting to 1d.")
interval = '1d'
if cryptos_input:
# Use regex to split the input string into individual crypto symbols
cryptos = re.findall(r'\b[A-Z]+\b', cryptos_input)
else:
logger.info("Fetching top 100 cryptocurrencies...")
cryptos = get_top_crypto_symbols()
end_date = get_last_date()
start_date = (datetime.strptime(end_date, "%Y-%m-%d") - timedelta(days=365*1)).strftime("%Y-%m-%d")
logger.info(f"Analyzing {len(cryptos)} cryptocurrencies from {start_date} to {end_date}...")
all_signals = []
batch_size = 10 # Reduced batch size for API rate limiting
total_batches = (len(cryptos) + batch_size - 1) // batch_size
for i in range(0, len(cryptos), batch_size):
batch = cryptos[i:i+batch_size]
logger.info(f"Processing batch {i//batch_size + 1} of {total_batches}...")
batch_results = process_batch(batch, start_date, end_date, interval)
all_signals.extend(batch_results)
logger.info(f"Completed batch {i//batch_size + 1} of {total_batches}")
if all_signals:
combined_signals = pd.concat(all_signals, ignore_index=True)
combined_signals = combined_signals[['Date', 'Symbol', 'Close', 'Signal_1x', 'Signal_2x', 'Signal_3x', 'VuManchu_Signal']]
output_dir = 'vumanchu/output'
os.makedirs(output_dir, exist_ok=True)
output_file = os.path.join(output_dir, f'all_crypto_signals_{interval}_{datetime.now().strftime("%Y%m%d_%H%M%S")}.csv')
combined_signals.to_csv(output_file, index=False)
print(f"\nSignals for all analyzed cryptocurrencies exported to {output_file}")
print("\nSample of the results:")
print(combined_signals.head(15)) # Increased to show more rows
else:
print("No signals generated for any cryptocurrency.")
if __name__ == "__main__":
main()