vuman / app.py
chemouda's picture
Update app.py
66ad478 verified
import gradio as gr
import pandas as pd
from crypto_analysis import analyze_crypto, get_top_crypto_symbols
from asset_analysis import analyze_asset, get_sp500_tickers
import os
from datetime import datetime, timedelta
import logging
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Global variable to store the full results
full_results = None
output_file_path = None
def run_crypto_analysis(symbols, interval):
end_date = datetime.today().strftime("%Y-%m-%d")
start_date = (datetime.today() - timedelta(days=365*5)).strftime("%Y-%m-%d")
if symbols:
symbols_list = [symbol.strip().upper() for symbol in symbols.split(",")]
else:
symbols_list = get_top_crypto_symbols()[:100] # Analyze top 100 cryptocurrencies
logger.info(f"Analyzing {len(symbols_list)} cryptocurrencies")
all_data = []
for symbol in symbols_list:
try:
data = analyze_crypto(symbol, start_date, end_date, interval)
if data is not None and not data.empty:
data['Symbol'] = symbol
all_data.append(data)
else:
logger.warning(f"No data returned for cryptocurrency: {symbol}")
except Exception as e:
logger.error(f"Error analyzing cryptocurrency {symbol}: {str(e)}")
logger.info(f"Crypto analysis complete. Data available for {len(all_data)} cryptocurrencies")
if all_data:
combined_data = pd.concat(all_data)
combined_data = combined_data.reset_index()
combined_data = combined_data[['Date', 'Symbol', 'Close', 'Signal_1x', 'Signal_2x', 'Signal_3x', 'VuManchu_Signal']]
combined_data['Date'] = combined_data['Date'].dt.date
combined_data = combined_data.sort_values('Date', ascending=False) # Sort by date in descending order
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = f"output/all_crypto_signals_{interval}_{timestamp}.csv"
os.makedirs("output", exist_ok=True)
combined_data.to_csv(output_file, index=False)
logger.info(f"Crypto analysis complete. Output saved to {output_file}")
return combined_data, output_file
else:
logger.warning("No data available for any of the selected crypto parameters.")
return pd.DataFrame(), None
def run_asset_analysis(symbols, interval):
end_date = datetime.today().strftime("%Y-%m-%d")
start_date = (datetime.today() - timedelta(days=365*5)).strftime("%Y-%m-%d")
if symbols:
symbols_list = [symbol.strip().upper() for symbol in symbols.split(",")]
else:
symbols_list = get_sp500_tickers()
logger.info(f"Analyzing {len(symbols_list)} symbols")
all_data = []
for symbol in symbols_list:
try:
data = analyze_asset(symbol, start_date, end_date, interval, asset_type='stock')
if data is not None and not data.empty:
data['Symbol'] = symbol
all_data.append(data)
else:
logger.warning(f"No data returned for symbol: {symbol}")
except Exception as e:
logger.error(f"Error analyzing symbol {symbol}: {str(e)}")
logger.info(f"Analysis complete. Data available for {len(all_data)} symbols")
if all_data:
combined_data = pd.concat(all_data)
combined_data = combined_data.reset_index()
combined_data = combined_data[['Date', 'Symbol', 'Close', 'Signal_1x', 'Signal_2x', 'Signal_3x', 'VuManchu_Signal']]
combined_data['Date'] = combined_data['Date'].dt.date
combined_data = combined_data.sort_values('Date', ascending=False) # Sort by date in descending order
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = f"output/all_stocks_signals_{interval}_{timestamp}.csv"
os.makedirs("output", exist_ok=True)
combined_data.to_csv(output_file, index=False)
logger.info(f"Asset analysis complete. Output saved to {output_file}")
return combined_data, output_file
else:
logger.warning("No data available for any of the selected asset parameters.")
return pd.DataFrame(), None
def filter_latest_signals(df, signal_column, interval):
if df.empty:
logger.warning("Empty dataframe passed to filter_latest_signals")
return df
logger.info(f"Filtering signals. Input shape: {df.shape}")
# Determine the date range based on the interval
today = datetime.now().date()
if interval == '1d':
start_date = today - timedelta(days=15) # Last week for daily interval
elif interval == '1wk':
start_date = today - timedelta(days=60) # Last month for weekly interval
else:
start_date = today - timedelta(days=15) # Default to last week
# Filter the dataframe for the specified date range
df_filtered = df[df['Date'] >= start_date]
logger.info(f"Filtered for date range. Shape: {df_filtered.shape}")
# Filter for the chosen signal
if signal_column != 'All':
df_filtered = df_filtered[df_filtered[signal_column] != '']
logger.info(f"Filtered for {signal_column}. Shape: {df_filtered.shape}")
else:
# Remove rows where all signal columns are empty
signal_columns = ['Signal_1x', 'Signal_2x', 'Signal_3x', 'VuManchu_Signal']
df_filtered = df_filtered[df_filtered[signal_columns].ne('').any(axis=1)]
logger.info(f"Removed rows with all empty signals. Shape: {df_filtered.shape}")
result = df_filtered.sort_values('Date', ascending=False)
logger.info(f"Final filtered result shape: {result.shape}")
return result
def generate_signals(analysis_type, symbols, interval):
global full_results, output_file_path
logger.info(f"Generating signals: analysis_type={analysis_type}, symbols={symbols}, interval={interval}")
try:
if analysis_type == "Cryptocurrency":
full_results, output_file_path = run_crypto_analysis(symbols, interval)
else:
full_results, output_file_path = run_asset_analysis(symbols, interval)
if isinstance(full_results, pd.DataFrame) and not full_results.empty:
logger.info(f"Analysis result shape: {full_results.shape}")
filtered_result = filter_latest_signals(full_results, 'All', interval)
logger.info(f"Filtered result shape: {filtered_result.shape}")
return filtered_result, output_file_path
else:
logger.warning("No data available from analysis")
return "No data available for the selected parameters.", None
except Exception as e:
logger.error(f"An error occurred in generate_signals: {e}")
return f"An error occurred: {str(e)}", None
def apply_filter(signal_filter):
global full_results
if full_results is None or full_results.empty:
return "No data available. Please generate signals first.", None
filtered_result = filter_latest_signals(full_results, signal_filter, interval)
return filtered_result, output_file_path
with gr.Blocks() as iface:
gr.Markdown("# VuManchu Trading Signals Analysis")
gr.Markdown("""
## Legal Disclaimer
**IMPORTANT: Please read this disclaimer carefully before using this tool.**
This VuManchu Trading Signals Analysis tool is provided for educational and informational purposes only. It does not constitute financial advice, trading advice, or any other type of professional advice. The creators and distributors of this tool are not financial advisors and do not purport to provide any financial or investment guidance.
The information and signals generated by this tool are based on historical data and technical analysis techniques. Past performance is not indicative of future results. The financial markets are inherently risky, and all trading and investment decisions carry the risk of loss.
By using this tool, you acknowledge and agree that:
1. You are solely responsible for any trading or investment decisions you make.
2. The creators and distributors of this tool are not liable for any losses or damages resulting from your use of, or reliance on, the information provided.
3. You should always conduct your own research and due diligence before making any financial decisions.
4. You should consult with a qualified financial advisor before making any investment or trading decisions.
Use of this tool constitutes acceptance of this disclaimer and an acknowledgment of the inherent risks associated with trading and investing.
""")
gr.Markdown("Perform technical analysis on cryptocurrencies or stocks using the VuManchu swing trading strategy and SuperTrend indicators. Select the analysis type, input desired symbols or use the defaults, choose the time interval, and view or download the generated trading signals. The table shows the trading signals for the last week (1d interval) or last month (1wk interval) for each symbol, excluding rows with no signals.")
with gr.Row():
analysis_type = gr.Radio(["Cryptocurrency", "Asset"], label="Select Analysis Type")
symbols = gr.Textbox(label="Enter symbols (comma-separated) or leave blank for default", placeholder="e.g., BTC,ETH,ADA or AAPL,MSFT,GOOGL")
interval = gr.Radio(["1d", "1wk"], label="Select Time Interval")
with gr.Row():
signal_filter = gr.Dropdown(["All", "Signal_1x", "Signal_2x", "Signal_3x", "VuManchu_Signal"], label="Filter by Signal", value="All")
generate_button = gr.Button("Generate Signals")
output_dataframe = gr.Dataframe(label="Trading Signals")
output_file = gr.File(label="Download Full Signals CSV")
generate_button.click(
generate_signals,
inputs=[analysis_type, symbols, interval],
outputs=[output_dataframe, output_file]
)
signal_filter.change(
apply_filter,
inputs=[signal_filter],
outputs=[output_dataframe, output_file]
)
if __name__ == "__main__":
logger.info("Starting Gradio interface")
iface.launch(server_name="0.0.0.0", server_port=7860, share=True)