Spaces:
Running
Running
import os | |
import logging | |
from llama_index.core import ( | |
SimpleDirectoryReader, | |
VectorStoreIndex, | |
StorageContext, | |
Settings) | |
from llama_index.core.node_parser import SentenceSplitter | |
from llama_index.core.schema import TextNode, MetadataMode | |
from llama_index.core.vector_stores import VectorStoreQuery | |
from llama_index.llms.llama_cpp import LlamaCPP | |
from llama_index.embeddings.fastembed import FastEmbedEmbedding | |
from llama_index.vector_stores.qdrant import QdrantVectorStore | |
from qdrant_client import QdrantClient | |
from llama_index.readers.file.docs.base import DocxReader, HWPReader, PDFReader | |
store_dir = os.path.expanduser("~/wtp_be_store/") | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
model_url = "https://huggingface.co./Qwen/Qwen2-0.5B-Instruct-GGUF/resolve/main/qwen2-0_5b-instruct-q4_k_m.gguf" | |
class ChatPDF: | |
pdf_count = 0 | |
text_chunks = [] | |
doc_ids = [] | |
nodes = [] | |
def __init__(self): | |
self.text_parser = SentenceSplitter(chunk_size=512, chunk_overlap=24) | |
logger.info("initializing the vector store related objects") | |
self.client = QdrantClient(path=store_dir) | |
self.vector_store = QdrantVectorStore( | |
client=self.client, | |
collection_name="rag_documents" | |
) | |
logger.info("initializing the FastEmbedEmbedding") | |
self.embed_model = FastEmbedEmbedding() | |
llm = LlamaCPP( | |
model_url=model_url, | |
temperature=0.1, | |
model_path=None, | |
max_new_tokens=256, | |
context_window=29440, | |
generate_kwargs={}, | |
verbose=True, | |
) | |
logger.info("initializing the global settings") | |
Settings.text_splitter = self.text_parser | |
Settings.embed_model = self.embed_model | |
Settings.llm = llm | |
Settings.transformations = [self.text_parser] | |
def ingest(self, files_dir: str): | |
docs = SimpleDirectoryReader(input_dir=files_dir).load_data() | |
logger.info("enumerating docs") | |
for doc_idx, doc in enumerate(docs): | |
self.pdf_count = self.pdf_count + 1 | |
curr_text_chunks = self.text_parser.split_text(doc.text) | |
self.text_chunks.extend(curr_text_chunks) | |
self.doc_ids.extend([doc_idx] * len(curr_text_chunks)) | |
logger.info("enumerating text_chunks") | |
for text_chunk in self.text_chunks: | |
node = TextNode(text=text_chunk) | |
if node.get_content(metadata_mode=MetadataMode.EMBED): | |
self.nodes.append(node) | |
logger.info("enumerating nodes") | |
for node in self.nodes: | |
node_embedding = self.embed_model.get_text_embedding( | |
node.get_content(metadata_mode=MetadataMode.ALL) | |
) | |
node.embedding = node_embedding | |
logger.info("initializing the storage context") | |
storage_context = StorageContext.from_defaults(vector_store=self.vector_store) | |
logger.info("indexing the nodes in VectorStoreIndex") | |
index = VectorStoreIndex( | |
nodes=self.nodes, | |
storage_context=storage_context, | |
transformations=Settings.transformations | |
) | |
self.query_engine = index.as_query_engine( | |
streaming=True, | |
similarity_top_k=3, | |
) | |
def ask(self, query: str): | |
logger.info("retrieving the response to the query") | |
streaming_response = self.query_engine.query("You are an assistant for question-answering tasks. Use three \ | |
sentences only and keep the answer concise.\n\n" + query) | |
return streaming_response | |
def clear(self): | |
self.vector_store.clear() | |
self.pdf_count = 0 | |
self.text_chunks = [] | |
self.doc_ids = [] | |
self.nodes = [] | |