import os import gradio as gr from huggingface_hub import InferenceClient import markdown client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Function to read and process Markdown files from the 'data' directory and its subfolders def load_markdown_files(data_folder='data'): documents = [] for root, dirs, files in os.walk(data_folder): for filename in files: if filename.endswith('.md'): file_path = os.path.join(root, filename) try: with open(file_path, 'r', encoding='utf-8') as file: content = file.read() # Convert Markdown to plain text if needed html_content = markdown.markdown(content) documents.append(html_content) # Store HTML content or plain text except Exception as e: print(f"Error reading {file_path}: {e}") return documents # Load documents at startup documents = load_markdown_files() def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] # Retrieve relevant context from loaded documents based on the user message relevant_contexts = retrieve_relevant_context(message, documents) # Add retrieved contexts to the messages for better responses messages.append({"role": "context", "content": " ".join(relevant_contexts)}) for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def retrieve_relevant_context(query, documents): # Simple keyword matching to find relevant documents relevant_contexts = [] for doc in documents: if query.lower() in doc.lower(): # Basic keyword search relevant_contexts.append(doc) return relevant_contexts[:3] # Return top 3 relevant contexts demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot. Only answer questions that you have knowledge of, in the language of Traditional Chinese.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) #To create a public link, set `share=True` in `launch()`. if __name__ == "__main__": demo.launch(share=True)