import gradio as gr import time import json from cerebras.cloud.sdk import Cerebras from typing import List, Dict, Tuple, Any, Generator from tenacity import retry, stop_after_attempt, wait_fixed def make_api_call(api_key: str, messages: List[Dict[str, str]], max_tokens: int, is_final_answer: bool = False) -> Dict[str, Any]: """ Make an API call to the Cerebras chat completions endpoint with retry logic. """ client = Cerebras(api_key=api_key) try: response = client.chat.completions.create( model="llama3.1-70b", messages=messages, max_tokens=max_tokens, temperature=0.2, response_format={"type": "json_object"} ) return json.loads(response.choices[0].message.content) except Exception as e: if is_final_answer: return {"title": "Error", "content": f"Failed to generate final answer. Error: {str(e)}"} else: return {"title": "Error", "content": f"Failed to generate step. Error: {str(e)}", "next_action": "final_answer"} def generate_response(api_key: str, prompt: str) -> Generator[Tuple[List[Tuple[str, str]], float], None, None]: """ Generate a response to the given prompt using a step-by-step reasoning approach. This function is now a generator that yields each step as it's generated. """ system_message = """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES.""" messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": prompt}, {"role": "assistant", "content": "Thank you! I will now think step by step following my instructions, starting at the beginning after decomposing the problem."} ] steps = [] step_count = 1 total_thinking_time = 0 while True: start_time = time.time() step_data = make_api_call(api_key, messages, 300) thinking_time = time.time() - start_time total_thinking_time += thinking_time step_title = f"Step {step_count}: {step_data['title']}" step_content = step_data['content'] steps.append((step_title, step_content)) messages.append({"role": "assistant", "content": json.dumps(step_data)}) # Yield the current conversation and total thinking time yield steps, total_thinking_time if step_data.get('next_action') == 'final_answer': break step_count += 1 # Request the final answer messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."}) start_time = time.time() final_data = make_api_call(api_key, messages, 200, is_final_answer=True) thinking_time = time.time() - start_time total_thinking_time += thinking_time steps.append(("Final Answer", final_data.get('content', 'No final answer provided.'))) # Yield the final conversation and total thinking time yield steps, total_thinking_time def respond(api_key: str, message: str, history: List[Tuple[str, str]]) -> Generator[Tuple[List[Tuple[str, str]], str], None, None]: """ Generator function to handle responses and yield updates for streaming. """ if not api_key: yield history, "Please provide a valid Cerebras API key." return # Initialize the generator response_generator = generate_response(api_key, message) for steps, total_time in response_generator: conversation = history.copy() for title, content in steps[len(conversation)//2:]: if title.startswith("Step"): conversation.append(("Assistant", f"**{title}**\n\n{content}")) elif title == "Final Answer": conversation.append(("Assistant", f"**{title}**\n\n{content}")) else: conversation.append(("Assistant", content)) yield conversation, f"**Total thinking time:** {total_time:.2f} seconds" def main(): with gr.Blocks() as demo: gr.Markdown("# o1-like Chain of Thought - LLaMA-3.1 70B on Cerebras") gr.Markdown(""" Implement Chain of Thought with prompting to improve output accuracy. Powered by Cerebras, ensuring fast reasoning steps. """) with gr.Row(): api_key_input = gr.Textbox( label="Cerebras API Key", type="password", placeholder="Enter your Cerebras API key", show_label=True ) chatbot = gr.Chatbot(label="Conversation") with gr.Row(): user_input = gr.Textbox( label="Your Query", placeholder="Enter your query here...", show_label=True ) submit_btn = gr.Button("Submit") thinking_time_display = gr.Textbox( label="Total Thinking Time", value="", interactive=False ) submit_btn.click( fn=respond, inputs=[api_key_input, user_input, chatbot], outputs=[chatbot, thinking_time_display], queue=True ) # Allow pressing Enter to submit user_input.submit( fn=respond, inputs=[api_key_input, user_input, chatbot], outputs=[chatbot, thinking_time_display], queue=True ) demo.launch() if __name__ == "__main__": main()