Spaces:
Runtime error
Runtime error
daniel-cerebras
commited on
Commit
•
a836b76
1
Parent(s):
6f49f08
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import time
|
3 |
import json
|
4 |
from cerebras.cloud.sdk import Cerebras
|
5 |
-
from typing import List, Dict, Tuple, Any
|
6 |
from tenacity import retry, stop_after_attempt, wait_fixed
|
7 |
|
8 |
def make_api_call(api_key: str, messages: List[Dict[str, str]], max_tokens: int, is_final_answer: bool = False) -> Dict[str, Any]:
|
@@ -12,6 +12,7 @@ def make_api_call(api_key: str, messages: List[Dict[str, str]], max_tokens: int,
|
|
12 |
client = Cerebras(api_key=api_key)
|
13 |
|
14 |
try:
|
|
|
15 |
response = client.chat.completions.create(
|
16 |
model="llama3.1-70b",
|
17 |
messages=messages,
|
@@ -19,16 +20,31 @@ def make_api_call(api_key: str, messages: List[Dict[str, str]], max_tokens: int,
|
|
19 |
temperature=0.2,
|
20 |
response_format={"type": "json_object"}
|
21 |
)
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
except Exception as e:
|
24 |
if is_final_answer:
|
25 |
return {"title": "Error", "content": f"Failed to generate final answer. Error: {str(e)}"}
|
26 |
else:
|
27 |
return {"title": "Error", "content": f"Failed to generate step. Error: {str(e)}", "next_action": "final_answer"}
|
28 |
|
29 |
-
def generate_response(api_key: str, prompt: str) -> Tuple[List[Tuple[str, str, float
|
30 |
"""
|
31 |
Generate a response to the given prompt using a step-by-step reasoning approach.
|
|
|
32 |
"""
|
33 |
system_message = """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES."""
|
34 |
|
@@ -41,6 +57,8 @@ def generate_response(api_key: str, prompt: str) -> Tuple[List[Tuple[str, str, f
|
|
41 |
steps = []
|
42 |
step_count = 1
|
43 |
total_thinking_time = 0
|
|
|
|
|
44 |
|
45 |
while True:
|
46 |
start_time = time.time()
|
@@ -48,14 +66,24 @@ def generate_response(api_key: str, prompt: str) -> Tuple[List[Tuple[str, str, f
|
|
48 |
thinking_time = time.time() - start_time
|
49 |
total_thinking_time += thinking_time
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
messages.append({"role": "assistant", "content": json.dumps(step_data)})
|
53 |
|
|
|
|
|
|
|
54 |
if step_data.get('next_action') == 'final_answer':
|
55 |
break
|
56 |
|
57 |
step_count += 1
|
58 |
|
|
|
59 |
messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."})
|
60 |
|
61 |
start_time = time.time()
|
@@ -63,26 +91,36 @@ def generate_response(api_key: str, prompt: str) -> Tuple[List[Tuple[str, str, f
|
|
63 |
thinking_time = time.time() - start_time
|
64 |
total_thinking_time += thinking_time
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
def
|
71 |
"""
|
72 |
-
|
73 |
"""
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
# Gradio Blocks Interface with a Chatbot component and API key input
|
86 |
def main():
|
87 |
with gr.Blocks() as demo:
|
88 |
gr.Markdown("# o1-like Chain of Thought - LLaMA-3.1 70B on Cerebras")
|
@@ -109,25 +147,11 @@ def main():
|
|
109 |
submit_btn = gr.Button("Submit")
|
110 |
|
111 |
thinking_time_display = gr.Textbox(
|
112 |
-
label="
|
113 |
value="",
|
114 |
interactive=False
|
115 |
)
|
116 |
|
117 |
-
def respond(api_key, message, history):
|
118 |
-
if not api_key:
|
119 |
-
return history, "Please provide a valid Cerebras API key."
|
120 |
-
|
121 |
-
steps, total_time = generate_response(api_key, message)
|
122 |
-
for title, content, _ in steps:
|
123 |
-
if title.startswith("Step"):
|
124 |
-
history.append(("Assistant", f"**{title}**\n\n{content}"))
|
125 |
-
elif title == "Final Answer":
|
126 |
-
history.append(("Assistant", f"**{title}**\n\n{content}"))
|
127 |
-
else:
|
128 |
-
history.append(("Assistant", content))
|
129 |
-
return history, f"**Total thinking time:** {total_time:.2f} seconds"
|
130 |
-
|
131 |
submit_btn.click(
|
132 |
fn=respond,
|
133 |
inputs=[api_key_input, user_input, chatbot],
|
@@ -135,7 +159,7 @@ def main():
|
|
135 |
queue=True
|
136 |
)
|
137 |
|
138 |
-
#
|
139 |
user_input.submit(
|
140 |
fn=respond,
|
141 |
inputs=[api_key_input, user_input, chatbot],
|
|
|
2 |
import time
|
3 |
import json
|
4 |
from cerebras.cloud.sdk import Cerebras
|
5 |
+
from typing import List, Dict, Tuple, Any, Generator
|
6 |
from tenacity import retry, stop_after_attempt, wait_fixed
|
7 |
|
8 |
def make_api_call(api_key: str, messages: List[Dict[str, str]], max_tokens: int, is_final_answer: bool = False) -> Dict[str, Any]:
|
|
|
12 |
client = Cerebras(api_key=api_key)
|
13 |
|
14 |
try:
|
15 |
+
start_time = time.time()
|
16 |
response = client.chat.completions.create(
|
17 |
model="llama3.1-70b",
|
18 |
messages=messages,
|
|
|
20 |
temperature=0.2,
|
21 |
response_format={"type": "json_object"}
|
22 |
)
|
23 |
+
end_time = time.time()
|
24 |
+
|
25 |
+
content = json.loads(response.choices[0].message.content)
|
26 |
+
|
27 |
+
# Calculate tokens per second
|
28 |
+
total_tokens = response.usage.total_tokens
|
29 |
+
elapsed_time = end_time - start_time
|
30 |
+
tokens_per_second = total_tokens / elapsed_time if elapsed_time > 0 else 0
|
31 |
+
|
32 |
+
content['token_info'] = {
|
33 |
+
'total_tokens': total_tokens,
|
34 |
+
'tokens_per_second': tokens_per_second
|
35 |
+
}
|
36 |
+
|
37 |
+
return content
|
38 |
except Exception as e:
|
39 |
if is_final_answer:
|
40 |
return {"title": "Error", "content": f"Failed to generate final answer. Error: {str(e)}"}
|
41 |
else:
|
42 |
return {"title": "Error", "content": f"Failed to generate step. Error: {str(e)}", "next_action": "final_answer"}
|
43 |
|
44 |
+
def generate_response(api_key: str, prompt: str) -> Generator[Tuple[List[Tuple[str, str]], float, int, float], None, None]:
|
45 |
"""
|
46 |
Generate a response to the given prompt using a step-by-step reasoning approach.
|
47 |
+
This function is now a generator that yields each step as it's generated.
|
48 |
"""
|
49 |
system_message = """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES."""
|
50 |
|
|
|
57 |
steps = []
|
58 |
step_count = 1
|
59 |
total_thinking_time = 0
|
60 |
+
total_tokens = 0
|
61 |
+
total_tokens_per_second = 0
|
62 |
|
63 |
while True:
|
64 |
start_time = time.time()
|
|
|
66 |
thinking_time = time.time() - start_time
|
67 |
total_thinking_time += thinking_time
|
68 |
|
69 |
+
token_info = step_data.pop('token_info', {'total_tokens': 0, 'tokens_per_second': 0})
|
70 |
+
total_tokens += token_info['total_tokens']
|
71 |
+
total_tokens_per_second += token_info['tokens_per_second']
|
72 |
+
|
73 |
+
step_title = f"Step {step_count}: {step_data['title']}"
|
74 |
+
step_content = f"{step_data['content']}\n\n**Cerebras LLM Call Duration: {thinking_time:.2f} seconds**\n**Tokens: {token_info['total_tokens']}, Tokens/s: {token_info['tokens_per_second']:.2f}**"
|
75 |
+
steps.append((step_title, step_content))
|
76 |
messages.append({"role": "assistant", "content": json.dumps(step_data)})
|
77 |
|
78 |
+
# Yield the current conversation, total thinking time, total tokens, and average tokens per second
|
79 |
+
yield steps, total_thinking_time, total_tokens, total_tokens_per_second / step_count if step_count > 0 else 0
|
80 |
+
|
81 |
if step_data.get('next_action') == 'final_answer':
|
82 |
break
|
83 |
|
84 |
step_count += 1
|
85 |
|
86 |
+
# Request the final answer
|
87 |
messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."})
|
88 |
|
89 |
start_time = time.time()
|
|
|
91 |
thinking_time = time.time() - start_time
|
92 |
total_thinking_time += thinking_time
|
93 |
|
94 |
+
token_info = final_data.pop('token_info', {'total_tokens': 0, 'tokens_per_second': 0})
|
95 |
+
total_tokens += token_info['total_tokens']
|
96 |
+
total_tokens_per_second += token_info['tokens_per_second']
|
97 |
+
|
98 |
+
final_content = f"{final_data.get('content', 'No final answer provided.')}\n\n**Final answer thinking time: {thinking_time:.2f} seconds**\n**Tokens: {token_info['total_tokens']}, Tokens/s: {token_info['tokens_per_second']:.2f}**"
|
99 |
+
steps.append(("Final Answer", final_content))
|
100 |
+
|
101 |
+
# Yield the final conversation, total thinking time, total tokens, and average tokens per second
|
102 |
+
yield steps, total_thinking_time, total_tokens, total_tokens_per_second / (step_count + 1)
|
103 |
|
104 |
+
def respond(api_key: str, message: str, history: List[Tuple[str, str]]) -> Generator[Tuple[List[Tuple[str, str]], str], None, None]:
|
105 |
"""
|
106 |
+
Generator function to handle responses and yield updates for streaming.
|
107 |
"""
|
108 |
+
if not api_key:
|
109 |
+
yield history, "Please provide a valid Cerebras API key."
|
110 |
+
return
|
111 |
+
|
112 |
+
# Initialize the generator
|
113 |
+
response_generator = generate_response(api_key, message)
|
114 |
+
|
115 |
+
for steps, total_time, total_tokens, avg_tokens_per_second in response_generator:
|
116 |
+
conversation = history.copy()
|
117 |
+
for title, content in steps[len(conversation):]:
|
118 |
+
if title.startswith("Step") or title == "Final Answer":
|
119 |
+
conversation.append((title, content))
|
120 |
+
else:
|
121 |
+
conversation.append((title, content))
|
122 |
+
yield conversation, f"**Total thinking time:** {total_time:.2f} seconds\n**Total tokens:** {total_tokens}\n**Average tokens/s:** {avg_tokens_per_second:.2f}"
|
123 |
|
|
|
124 |
def main():
|
125 |
with gr.Blocks() as demo:
|
126 |
gr.Markdown("# o1-like Chain of Thought - LLaMA-3.1 70B on Cerebras")
|
|
|
147 |
submit_btn = gr.Button("Submit")
|
148 |
|
149 |
thinking_time_display = gr.Textbox(
|
150 |
+
label="Performance Metrics",
|
151 |
value="",
|
152 |
interactive=False
|
153 |
)
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
submit_btn.click(
|
156 |
fn=respond,
|
157 |
inputs=[api_key_input, user_input, chatbot],
|
|
|
159 |
queue=True
|
160 |
)
|
161 |
|
162 |
+
# Allow pressing Enter to submit
|
163 |
user_input.submit(
|
164 |
fn=respond,
|
165 |
inputs=[api_key_input, user_input, chatbot],
|