import gradio as gr import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from tensorflow.keras.applications import ResNet50V2 from tensorflow.keras.models import Sequential, load_model from tensorflow.keras.layers import Dense from tensorflow.keras.utils import to_categorical from tensorflow.keras.applications.resnet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import load_img, img_to_array # 金門具有代表性的栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺五種物種。我們來挑戰五種類別總共用五十張照片, 看能不能打造一個神經網路學會辨識這五種類別。 # 讀入栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺資料圖檔 image_folders = ['Image01', 'Image02', 'Image03'] # 為了後面的需要,我們將五種類別照片的答案用 `labels` 呈現 labels = ["栗喉蜂虎", "戴勝", "鸕鶿"] num_classes = len(labels) base_dir = './classify_image/' # 載入並檢視訓練完成的模型。 model = load_model('my_cnn_model.h5') # Loading the Tensorflow Saved Model (PB) print(model.summary()) # 注意現在主函數做辨識只有五個種類。而且是使用我們自行訓練的 model! def classify_image(inp): inp = inp.reshape((-1, 256, 256, 3)) inp = preprocess_input(inp) prediction = model.predict(inp).flatten() return {labels[i]: float(prediction[i]) for i in range(num_classes)} image = gr.Image(shape=(256, 256), label="栗喉蜂虎、戴勝及鸕鶿照片") label = gr.Label(num_top_classes=num_classes, label="AI ResNet50V2遷移式學習辨識結果") some_text="我能辨識栗喉蜂虎、戴勝及鸕鶿。找張栗喉蜂虎、戴勝及鸕鶿照片來考我吧!" # 我們將金門栗喉蜂虎、藍孔雀、戴勝、鱟及歐亞水獺數據庫中的圖片拿出來當作範例圖片讓使用者使用 sample_images = [] for i in range(num_classes): thedir = base_dir + image_folders[i] for file in os.listdir(thedir): if file == ".git" or file == ".ipynb_checkpoints": continue sample_images.append(base_dir + image_folders[i] + '/' + file) # 最後,將所有東西組裝在一起,就大功告成了! iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, title="AI 栗喉蜂虎、戴勝及鸕鶿辨識機", description=some_text, examples=sample_images, live=True) iface.launch()