{ "cells": [ { "cell_type": "code", "execution_count": 136, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import plotly.express as px\n", "import plotly.graph_objects as go\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import MinMaxScaler, OrdinalEncoder\n", "from sklearn.metrics import mean_squared_error\n", "from sklearn.ensemble import RandomForestClassifier\n", "import torch\n", "import torch.nn as nn\n", "import math, time, pickle\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | date | \n", "precipitation | \n", "temp_max | \n", "temp_min | \n", "wind | \n", "weather | \n", "
---|---|---|---|---|---|---|
0 | \n", "2012-01-01 | \n", "0.0 | \n", "12.8 | \n", "5.0 | \n", "4.7 | \n", "drizzle | \n", "
1 | \n", "2012-01-02 | \n", "10.9 | \n", "10.6 | \n", "2.8 | \n", "4.5 | \n", "rain | \n", "
2 | \n", "2012-01-03 | \n", "0.8 | \n", "11.7 | \n", "7.2 | \n", "2.3 | \n", "rain | \n", "
3 | \n", "2012-01-04 | \n", "20.3 | \n", "12.2 | \n", "5.6 | \n", "4.7 | \n", "rain | \n", "
4 | \n", "2012-01-05 | \n", "1.3 | \n", "8.9 | \n", "2.8 | \n", "6.1 | \n", "rain | \n", "