Christopher Capobianco commited on
Commit
7234ab5
1 Parent(s): 1345ad3

Update application file

Browse files
Files changed (1) hide show
  1. app.py +69 -2
app.py CHANGED
@@ -1,5 +1,72 @@
1
  import streamlit as st
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from PIL import Image
3
 
4
+ # Page title
5
+ st.title("Chris Capobianco's ML Portfolio")
6
 
7
+ st.markdown('Hello, welcome to my ML portfolio.')
8
+ st.markdown('Please have a look at the descriptions below, and select a project from the sidebar.')
9
+
10
+ st.header('Projects', divider='red')
11
+
12
+ mv = Image.open("assets/movie.jpg")
13
+ # wp = Image.open("assets/weather.png")
14
+ sm = Image.open("assets/stock-market.png")
15
+ mu = Image.open("assets/music.jpg")
16
+ llm = Image.open("assets/llm.png")
17
+
18
+ with st.container():
19
+ text_column, image_column = st.columns((3,1))
20
+ with text_column:
21
+ st.subheader("Movie Recommendation", divider="green")
22
+ st.markdown("""
23
+ - Created a content based recommendation system using cosine similarity
24
+ - Trained on almost 5k movies and credits from the TMDB dataset available at Kaggle
25
+ """)
26
+ with image_column:
27
+ st.image(mv)
28
+
29
+ # with st.container():
30
+ # text_column, image_column = st.columns((3,1))
31
+ # with text_column:
32
+ # st.subheader("Weather Classification", divider="green")
33
+ # st.markdown("""
34
+ # - Created a Random Forest classification model to predict the weather
35
+ # - Trained on three years of data for the city of Seattle, Washington
36
+ # """)
37
+ # with image_column:
38
+ # st.image(wp)
39
+
40
+ with st.container():
41
+ text_column, image_column = st.columns((3,1))
42
+ with text_column:
43
+ st.subheader("Stock Market Forecast", divider="green")
44
+ st.markdown("""
45
+ - Created a two layer GRU model to forecast of stock prices
46
+ - Trained on 2006-2018 closing prices of four well known stocks
47
+ """)
48
+ with image_column:
49
+ st.image(sm)
50
+
51
+ with st.container():
52
+ text_column, image_column = st.columns((3,1))
53
+ with text_column:
54
+ st.subheader("Generative Music", divider="green")
55
+ st.markdown("""
56
+ - Created a LSTM model to generate music
57
+ - Trained on MIDI files from Final Fantasy series
58
+ """)
59
+ with image_column:
60
+ st.image(mu)
61
+
62
+ with st.container():
63
+ text_column, image_column = st.columns((3,1))
64
+ with text_column:
65
+ st.subheader("Fine Tuned LLM", divider="green")
66
+ st.warning("**Work In Progress**")
67
+ st.markdown("""
68
+ - Fine tuned a LLM to act like math assistant
69
+ - The base model is Meta's Llama 3.1 (8B) Instruct
70
+ """)
71
+ with image_column:
72
+ st.image(llm)