Christopher Capobianco
commited on
Commit
•
7234ab5
1
Parent(s):
1345ad3
Update application file
Browse files
app.py
CHANGED
@@ -1,5 +1,72 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
|
3 |
-
|
4 |
-
st.
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
|
4 |
+
# Page title
|
5 |
+
st.title("Chris Capobianco's ML Portfolio")
|
6 |
|
7 |
+
st.markdown('Hello, welcome to my ML portfolio.')
|
8 |
+
st.markdown('Please have a look at the descriptions below, and select a project from the sidebar.')
|
9 |
+
|
10 |
+
st.header('Projects', divider='red')
|
11 |
+
|
12 |
+
mv = Image.open("assets/movie.jpg")
|
13 |
+
# wp = Image.open("assets/weather.png")
|
14 |
+
sm = Image.open("assets/stock-market.png")
|
15 |
+
mu = Image.open("assets/music.jpg")
|
16 |
+
llm = Image.open("assets/llm.png")
|
17 |
+
|
18 |
+
with st.container():
|
19 |
+
text_column, image_column = st.columns((3,1))
|
20 |
+
with text_column:
|
21 |
+
st.subheader("Movie Recommendation", divider="green")
|
22 |
+
st.markdown("""
|
23 |
+
- Created a content based recommendation system using cosine similarity
|
24 |
+
- Trained on almost 5k movies and credits from the TMDB dataset available at Kaggle
|
25 |
+
""")
|
26 |
+
with image_column:
|
27 |
+
st.image(mv)
|
28 |
+
|
29 |
+
# with st.container():
|
30 |
+
# text_column, image_column = st.columns((3,1))
|
31 |
+
# with text_column:
|
32 |
+
# st.subheader("Weather Classification", divider="green")
|
33 |
+
# st.markdown("""
|
34 |
+
# - Created a Random Forest classification model to predict the weather
|
35 |
+
# - Trained on three years of data for the city of Seattle, Washington
|
36 |
+
# """)
|
37 |
+
# with image_column:
|
38 |
+
# st.image(wp)
|
39 |
+
|
40 |
+
with st.container():
|
41 |
+
text_column, image_column = st.columns((3,1))
|
42 |
+
with text_column:
|
43 |
+
st.subheader("Stock Market Forecast", divider="green")
|
44 |
+
st.markdown("""
|
45 |
+
- Created a two layer GRU model to forecast of stock prices
|
46 |
+
- Trained on 2006-2018 closing prices of four well known stocks
|
47 |
+
""")
|
48 |
+
with image_column:
|
49 |
+
st.image(sm)
|
50 |
+
|
51 |
+
with st.container():
|
52 |
+
text_column, image_column = st.columns((3,1))
|
53 |
+
with text_column:
|
54 |
+
st.subheader("Generative Music", divider="green")
|
55 |
+
st.markdown("""
|
56 |
+
- Created a LSTM model to generate music
|
57 |
+
- Trained on MIDI files from Final Fantasy series
|
58 |
+
""")
|
59 |
+
with image_column:
|
60 |
+
st.image(mu)
|
61 |
+
|
62 |
+
with st.container():
|
63 |
+
text_column, image_column = st.columns((3,1))
|
64 |
+
with text_column:
|
65 |
+
st.subheader("Fine Tuned LLM", divider="green")
|
66 |
+
st.warning("**Work In Progress**")
|
67 |
+
st.markdown("""
|
68 |
+
- Fine tuned a LLM to act like math assistant
|
69 |
+
- The base model is Meta's Llama 3.1 (8B) Instruct
|
70 |
+
""")
|
71 |
+
with image_column:
|
72 |
+
st.image(llm)
|