Christopher Capobianco
commited on
Commit
·
385b1f2
1
Parent(s):
938985b
Add Document Classifier project
Browse files- Home.py +12 -0
- app.py +2 -0
- assets/document.jpg +0 -0
- models/autoclassifier.pkl +3 -0
- projects/01_Document_Classifier.py +102 -0
Home.py
CHANGED
@@ -9,12 +9,24 @@ st.markdown('Please have a look at the descriptions below, and select a project
|
|
9 |
|
10 |
st.header('Projects', divider='red')
|
11 |
|
|
|
12 |
mv = Image.open("assets/movie.jpg")
|
13 |
# wp = Image.open("assets/weather.png")
|
14 |
sm = Image.open("assets/stock-market.png")
|
15 |
mu = Image.open("assets/music.jpg")
|
16 |
llm = Image.open("assets/llm.png")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
with st.container():
|
19 |
text_column, image_column = st.columns((3,1))
|
20 |
with text_column:
|
|
|
9 |
|
10 |
st.header('Projects', divider='red')
|
11 |
|
12 |
+
do = Image.open("assets/document.jpg")
|
13 |
mv = Image.open("assets/movie.jpg")
|
14 |
# wp = Image.open("assets/weather.png")
|
15 |
sm = Image.open("assets/stock-market.png")
|
16 |
mu = Image.open("assets/music.jpg")
|
17 |
llm = Image.open("assets/llm.png")
|
18 |
|
19 |
+
with st.container():
|
20 |
+
text_column, image_column = st.columns((3,1))
|
21 |
+
with text_column:
|
22 |
+
st.subheader("Document Classifier", divider="green")
|
23 |
+
st.markdown("""
|
24 |
+
- Used OCR text and a Random Forest classification model to predict a document's classification
|
25 |
+
- Trained on Real World Documents Collection at Kaggle
|
26 |
+
""")
|
27 |
+
with image_column:
|
28 |
+
st.image(do)
|
29 |
+
|
30 |
with st.container():
|
31 |
text_column, image_column = st.columns((3,1))
|
32 |
with text_column:
|
app.py
CHANGED
@@ -5,6 +5,7 @@ st.set_page_config(page_title="Chris Capobianco's Profile", page_icon=':rocket:'
|
|
5 |
|
6 |
home = st.Page('Home.py', title = 'Home')
|
7 |
|
|
|
8 |
movie_recommendation = st.Page('projects/02_Movie_Recommendation.py', title='Movie Recommendation')
|
9 |
# weather_classification = st.Page('projects/04_Weather_Classification.py', title='Weather Classification')
|
10 |
stock_market = st.Page('projects/05_Stock_Market.py', title='Stock Market Forecast')
|
@@ -17,6 +18,7 @@ pg = st.navigation(
|
|
17 |
home
|
18 |
],
|
19 |
'Projects': [
|
|
|
20 |
movie_recommendation,
|
21 |
# weather_classification,
|
22 |
stock_market,
|
|
|
5 |
|
6 |
home = st.Page('Home.py', title = 'Home')
|
7 |
|
8 |
+
document_classification = st.Page('projects/01_Document_Classifier.py', title='Document Classifier')
|
9 |
movie_recommendation = st.Page('projects/02_Movie_Recommendation.py', title='Movie Recommendation')
|
10 |
# weather_classification = st.Page('projects/04_Weather_Classification.py', title='Weather Classification')
|
11 |
stock_market = st.Page('projects/05_Stock_Market.py', title='Stock Market Forecast')
|
|
|
18 |
home
|
19 |
],
|
20 |
'Projects': [
|
21 |
+
document_classification,
|
22 |
movie_recommendation,
|
23 |
# weather_classification,
|
24 |
stock_market,
|
assets/document.jpg
ADDED
models/autoclassifier.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85fbfe655117e18cba957ced3fec41d9c243013461682d0f5c296762cda54d9c
|
3 |
+
size 5116548
|
projects/01_Document_Classifier.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import easyocr
|
3 |
+
import pickle
|
4 |
+
import spacy
|
5 |
+
import en_core_web_sm
|
6 |
+
import re
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Function to Load the Spacy tokenizer
|
10 |
+
@st.cache_data
|
11 |
+
def load_nlp():
|
12 |
+
return spacy.load('en_core_web_sm')
|
13 |
+
|
14 |
+
# Function to Initialze the OCR Engine
|
15 |
+
@st.cache_resource
|
16 |
+
def load_ocr_engine():
|
17 |
+
return easyocr.Reader(['en'])
|
18 |
+
|
19 |
+
# Function to Load the model
|
20 |
+
@st.cache_resource
|
21 |
+
def load_model():
|
22 |
+
with open('models/autoclassifier.pkl', 'rb') as model_file:
|
23 |
+
stopwords = pickle.load(model_file)
|
24 |
+
punctuations = pickle.load(model_file)
|
25 |
+
model_pipe = pickle.load(model_file)
|
26 |
+
return (stopwords, punctuations, model_pipe)
|
27 |
+
|
28 |
+
# Function to tokenize the text
|
29 |
+
def tokenizer(sentence):
|
30 |
+
# Process the text
|
31 |
+
doc = nlp(sentence)
|
32 |
+
|
33 |
+
# Convert tokens to lemma form for all except '-PRON-'
|
34 |
+
# Recall: Tokens like 'I', 'my', 'me' are represented as '-PRON-' by lemma attribute (See SpaCy Introduction)
|
35 |
+
tokens = [ token.lemma_.lower().strip() if token.lemma_ != "-PRON-" else token.lower_ for token in doc ]
|
36 |
+
|
37 |
+
# Remove stop words and punctuations
|
38 |
+
tokens = [ token for token in tokens if token not in stopwords and token not in punctuations ]
|
39 |
+
|
40 |
+
return tokens
|
41 |
+
|
42 |
+
# Function to process uploaded images
|
43 |
+
@st.cache_data
|
44 |
+
def autoclassifier(images):
|
45 |
+
# Iterate through all uploaded images
|
46 |
+
with st.spinner(f"Processing Images"):
|
47 |
+
for image in images:
|
48 |
+
# Write bytes to disk
|
49 |
+
with open(image.name, 'wb') as f:
|
50 |
+
f.write(image.read())
|
51 |
+
|
52 |
+
# Load image into OCR Engine and extract text
|
53 |
+
raw_ocr = ocr_engine.readtext(image.name)
|
54 |
+
|
55 |
+
# Extract relevant words from raw OCR
|
56 |
+
words = ''
|
57 |
+
for (bbox, text, prob) in raw_ocr:
|
58 |
+
# Only keep OCR text with 50% probability or higher
|
59 |
+
if prob > 0.5:
|
60 |
+
# Filter out any digits
|
61 |
+
text = re.sub('[0-9]+', '', text)
|
62 |
+
# If we have any characters left, append to string
|
63 |
+
if text != '':
|
64 |
+
words += ' ' + text
|
65 |
+
# Pass filtered OCR string to the model
|
66 |
+
doc_type = model_pipe.predict([words])
|
67 |
+
|
68 |
+
# Report filename and document class
|
69 |
+
st.info(f"filename: '{image.name}', doc_type: '{doc_type[0]}'")
|
70 |
+
|
71 |
+
# Delete image file
|
72 |
+
os.remove(image.name)
|
73 |
+
|
74 |
+
st.header('Document Classifier', divider='green')
|
75 |
+
|
76 |
+
st.markdown("#### What is OCR?")
|
77 |
+
st.markdown("OCR stands for Optical Character Recognition, and the technology for it has been around for over 30 years.")
|
78 |
+
st.markdown("In this project, we leverage the extraction of the text from an image to classify the document. I am using EasyOCR as the OCR Engine, and I do some pre-processing of the raw OCR text to improve the quality of the words used to classify the documents.")
|
79 |
+
st.markdown("After an investigation I settled on a Random Forest classifier for this project, since it had the best classification accuracy of the different models I investigated.")
|
80 |
+
st.markdown("This project makes use of the [Real World Documents Collections](https://www.kaggle.com/datasets/shaz13/real-world-documents-collections) found at `Kaggle`")
|
81 |
+
st.markdown("*This project is based off the tutorial by Animesh Giri [Intelligent Document Classification](https://www.kaggle.com/code/animeshgiri/intelligent-document-classification)*")
|
82 |
+
st.markdown("*N.B. I created a similar document classifier in my first ML project, but that relied on IBM's Datacap for the OCR Engine. I also used a Support Vector Machine (SVM) classifier library (libsvm) at the time, but it was slow to train. I tried to re-create that document classifier again, using open source tools and modern techniques outlined in the referenced tutorial.*")
|
83 |
+
st.divider()
|
84 |
+
|
85 |
+
# Load the Spacy tokenizer
|
86 |
+
nlp = load_nlp()
|
87 |
+
|
88 |
+
# Initialze the OCR Engine
|
89 |
+
ocr_engine = load_ocr_engine()
|
90 |
+
|
91 |
+
# Load the Model
|
92 |
+
stopwords, punctuations, model_pipe = load_model()
|
93 |
+
|
94 |
+
# Fetch uploaded images
|
95 |
+
images = st.file_uploader(
|
96 |
+
"Choose an image to classify",
|
97 |
+
type=['png','jpg','jpeg'],
|
98 |
+
accept_multiple_files=True
|
99 |
+
)
|
100 |
+
|
101 |
+
# Process and predict document classification
|
102 |
+
autoclassifier(images)
|