Spaces:
Running
on
Zero
Running
on
Zero
Actualización
Browse files
app.py
CHANGED
@@ -19,16 +19,17 @@ from safetensors.torch import load_file
|
|
19 |
from torchvision.transforms import v2
|
20 |
from tqdm import tqdm
|
21 |
|
22 |
-
from src.utils.camera_util import (FOV_to_intrinsics, get_circular_camera_poses,
|
23 |
-
get_zero123plus_input_cameras)
|
24 |
from src.utils.infer_util import (remove_background, resize_foreground)
|
25 |
from src.utils.mesh_util import save_glb, save_obj
|
26 |
from src.utils.train_util import instantiate_from_config
|
27 |
|
|
|
28 |
zero = torch.Tensor([0]).cuda()
|
29 |
-
print(zero.device) #
|
30 |
-
print(zero.device) #
|
31 |
|
|
|
32 |
def find_cuda():
|
33 |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
34 |
if cuda_home and os.path.exists(cuda_home):
|
@@ -41,6 +42,7 @@ def find_cuda():
|
|
41 |
|
42 |
return None
|
43 |
|
|
|
44 |
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
|
45 |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
|
46 |
if is_flexicubes:
|
@@ -48,18 +50,17 @@ def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexi
|
|
48 |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
49 |
else:
|
50 |
extrinsics = c2ws.flatten(-2)
|
51 |
-
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(
|
52 |
-
0).repeat(M, 1, 1).float().flatten(-2)
|
53 |
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
|
54 |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
55 |
return cameras
|
56 |
|
57 |
-
|
58 |
def check_input_image(input_image):
|
59 |
if input_image is None:
|
60 |
raise gr.Error("No image selected!")
|
61 |
|
62 |
-
|
63 |
def preprocess(input_image, do_remove_background):
|
64 |
rembg_session = rembg.new_session() if do_remove_background else None
|
65 |
|
@@ -69,31 +70,28 @@ def preprocess(input_image, do_remove_background):
|
|
69 |
|
70 |
return input_image
|
71 |
|
72 |
-
|
73 |
@spaces.GPU(duration=20)
|
74 |
def generate_mvs(input_image, sample_steps, sample_seed):
|
75 |
seed_everything(sample_seed)
|
76 |
|
77 |
-
print(zero.device) #
|
78 |
|
79 |
-
z123_image = pipeline(
|
80 |
-
input_image, num_inference_steps=sample_steps).images[0]
|
81 |
|
82 |
show_image = np.asarray(z123_image, dtype=np.uint8)
|
83 |
show_image = torch.from_numpy(show_image)
|
84 |
-
show_image = rearrange(
|
85 |
-
|
86 |
-
show_image = rearrange(
|
87 |
-
show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
|
88 |
show_image = Image.fromarray(show_image.numpy())
|
89 |
|
90 |
return z123_image, show_image
|
91 |
|
92 |
-
|
93 |
@spaces.GPU
|
94 |
def make3d(images):
|
95 |
|
96 |
-
print(zero.device) #
|
97 |
|
98 |
global model
|
99 |
if IS_FLEXICUBES:
|
@@ -104,16 +102,13 @@ def make3d(images):
|
|
104 |
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
|
105 |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
|
106 |
|
107 |
-
input_cameras = get_zero123plus_input_cameras(
|
108 |
-
|
109 |
-
render_cameras = get_render_cameras(
|
110 |
-
batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
111 |
|
112 |
images = images.unsqueeze(0).to(device)
|
113 |
-
images = v2.functional.resize(
|
114 |
-
images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
115 |
|
116 |
-
mesh_fpath = tempfile.NamedTemporaryFile(suffix=
|
117 |
print(mesh_fpath)
|
118 |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
119 |
mesh_dirname = os.path.dirname(mesh_fpath)
|
@@ -121,8 +116,7 @@ def make3d(images):
|
|
121 |
|
122 |
with torch.no_grad():
|
123 |
planes = model.forward_planes(images, input_cameras)
|
124 |
-
mesh_out = model.extract_mesh(
|
125 |
-
planes, use_texture_map=False, **infer_config)
|
126 |
|
127 |
vertices, faces, vertex_colors = mesh_out
|
128 |
vertices = vertices[:, [1, 2, 0]]
|
@@ -134,11 +128,11 @@ def make3d(images):
|
|
134 |
|
135 |
return mesh_fpath, mesh_glb_fpath
|
136 |
|
137 |
-
|
138 |
@spaces.GPU
|
139 |
def process_image(num_images, prompt):
|
140 |
|
141 |
-
print(zero.device) #
|
142 |
|
143 |
global pipe
|
144 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
@@ -152,8 +146,7 @@ def process_image(num_images, prompt):
|
|
152 |
timesteps=[800]
|
153 |
).images
|
154 |
|
155 |
-
|
156 |
-
# Configuration
|
157 |
cuda_path = find_cuda()
|
158 |
config_path = 'configs/instant-mesh-large.yaml'
|
159 |
config = OmegaConf.load(config_path)
|
@@ -164,7 +157,7 @@ infer_config = config.infer_config
|
|
164 |
IS_FLEXICUBES = config_name.startswith('instant-mesh')
|
165 |
device = torch.device('cuda')
|
166 |
|
167 |
-
#
|
168 |
print('Loading diffusion model ...')
|
169 |
pipeline = DiffusionPipeline.from_pretrained(
|
170 |
"sudo-ai/zero123plus-v1.2",
|
@@ -182,21 +175,20 @@ pipeline.unet.load_state_dict(state_dict, strict=True)
|
|
182 |
|
183 |
pipeline = pipeline.to(device)
|
184 |
|
185 |
-
#
|
186 |
print('Loading reconstruction model ...')
|
187 |
model_ckpt_path = hf_hub_download(
|
188 |
repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
|
189 |
model = instantiate_from_config(model_config)
|
190 |
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
191 |
-
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith(
|
192 |
-
'lrm_generator.') and 'source_camera' not in k}
|
193 |
model.load_state_dict(state_dict, strict=True)
|
194 |
|
195 |
model = model.to(device)
|
196 |
|
197 |
print('Carga Completa!')
|
198 |
|
199 |
-
# Gradio
|
200 |
with gr.Blocks() as demo:
|
201 |
with gr.Row(variant="panel"):
|
202 |
with gr.Column():
|
@@ -265,4 +257,4 @@ with gr.Blocks() as demo:
|
|
265 |
outputs=[output_model_obj, output_model_glb]
|
266 |
)
|
267 |
|
268 |
-
demo.launch()
|
|
|
19 |
from torchvision.transforms import v2
|
20 |
from tqdm import tqdm
|
21 |
|
22 |
+
from src.utils.camera_util import (FOV_to_intrinsics, get_circular_camera_poses, get_zero123plus_input_cameras)
|
|
|
23 |
from src.utils.infer_util import (remove_background, resize_foreground)
|
24 |
from src.utils.mesh_util import save_glb, save_obj
|
25 |
from src.utils.train_util import instantiate_from_config
|
26 |
|
27 |
+
# Inicializa un tensor en CUDA y verifica el dispositivo.
|
28 |
zero = torch.Tensor([0]).cuda()
|
29 |
+
print(zero.device) # Verifica que el dispositivo sea CUDA.
|
30 |
+
print(zero.device) # Verifica nuevamente que el dispositivo sea CUDA.
|
31 |
|
32 |
+
# Función para encontrar el path de CUDA.
|
33 |
def find_cuda():
|
34 |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
35 |
if cuda_home and os.path.exists(cuda_home):
|
|
|
42 |
|
43 |
return None
|
44 |
|
45 |
+
# Función para obtener las cámaras de renderizado.
|
46 |
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
|
47 |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
|
48 |
if is_flexicubes:
|
|
|
50 |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
51 |
else:
|
52 |
extrinsics = c2ws.flatten(-2)
|
53 |
+
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
|
|
|
54 |
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
|
55 |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
56 |
return cameras
|
57 |
|
58 |
+
# Verifica si la imagen de entrada es nula.
|
59 |
def check_input_image(input_image):
|
60 |
if input_image is None:
|
61 |
raise gr.Error("No image selected!")
|
62 |
|
63 |
+
# Preprocesa la imagen de entrada y opcionalmente elimina el fondo.
|
64 |
def preprocess(input_image, do_remove_background):
|
65 |
rembg_session = rembg.new_session() if do_remove_background else None
|
66 |
|
|
|
70 |
|
71 |
return input_image
|
72 |
|
73 |
+
# Genera vistas múltiples de la imagen de entrada.
|
74 |
@spaces.GPU(duration=20)
|
75 |
def generate_mvs(input_image, sample_steps, sample_seed):
|
76 |
seed_everything(sample_seed)
|
77 |
|
78 |
+
print(zero.device) # Verifica que el dispositivo sea CUDA.
|
79 |
|
80 |
+
z123_image = pipeline(input_image, num_inference_steps=sample_steps).images[0]
|
|
|
81 |
|
82 |
show_image = np.asarray(z123_image, dtype=np.uint8)
|
83 |
show_image = torch.from_numpy(show_image)
|
84 |
+
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
85 |
+
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
|
|
|
|
|
86 |
show_image = Image.fromarray(show_image.numpy())
|
87 |
|
88 |
return z123_image, show_image
|
89 |
|
90 |
+
# Convierte imágenes en modelos 3D.
|
91 |
@spaces.GPU
|
92 |
def make3d(images):
|
93 |
|
94 |
+
print(zero.device) # Verifica que el dispositivo sea CUDA.
|
95 |
|
96 |
global model
|
97 |
if IS_FLEXICUBES:
|
|
|
102 |
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
|
103 |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
|
104 |
|
105 |
+
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
106 |
+
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
|
|
|
|
107 |
|
108 |
images = images.unsqueeze(0).to(device)
|
109 |
+
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
|
|
110 |
|
111 |
+
mesh_fpath = tempfile.NamedTemporaryFile(suffix=".obj", delete=False).name
|
112 |
print(mesh_fpath)
|
113 |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
114 |
mesh_dirname = os.path.dirname(mesh_fpath)
|
|
|
116 |
|
117 |
with torch.no_grad():
|
118 |
planes = model.forward_planes(images, input_cameras)
|
119 |
+
mesh_out = model.extract_mesh(planes, use_texture_map=False, **infer_config)
|
|
|
120 |
|
121 |
vertices, faces, vertex_colors = mesh_out
|
122 |
vertices = vertices[:, [1, 2, 0]]
|
|
|
128 |
|
129 |
return mesh_fpath, mesh_glb_fpath
|
130 |
|
131 |
+
# Procesa la imagen generada a partir de un prompt de texto.
|
132 |
@spaces.GPU
|
133 |
def process_image(num_images, prompt):
|
134 |
|
135 |
+
print(zero.device) # Verifica que el dispositivo sea CUDA.
|
136 |
|
137 |
global pipe
|
138 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
|
|
146 |
timesteps=[800]
|
147 |
).images
|
148 |
|
149 |
+
# Configuración inicial del entorno CUDA y carga de configuración del modelo.
|
|
|
150 |
cuda_path = find_cuda()
|
151 |
config_path = 'configs/instant-mesh-large.yaml'
|
152 |
config = OmegaConf.load(config_path)
|
|
|
157 |
IS_FLEXICUBES = config_name.startswith('instant-mesh')
|
158 |
device = torch.device('cuda')
|
159 |
|
160 |
+
# Carga del modelo de difusión.
|
161 |
print('Loading diffusion model ...')
|
162 |
pipeline = DiffusionPipeline.from_pretrained(
|
163 |
"sudo-ai/zero123plus-v1.2",
|
|
|
175 |
|
176 |
pipeline = pipeline.to(device)
|
177 |
|
178 |
+
# Carga del modelo de reconstrucción.
|
179 |
print('Loading reconstruction model ...')
|
180 |
model_ckpt_path = hf_hub_download(
|
181 |
repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
|
182 |
model = instantiate_from_config(model_config)
|
183 |
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
184 |
+
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
|
|
185 |
model.load_state_dict(state_dict, strict=True)
|
186 |
|
187 |
model = model.to(device)
|
188 |
|
189 |
print('Carga Completa!')
|
190 |
|
191 |
+
# Interfaz de usuario usando Gradio.
|
192 |
with gr.Blocks() as demo:
|
193 |
with gr.Row(variant="panel"):
|
194 |
with gr.Column():
|
|
|
257 |
outputs=[output_model_obj, output_model_glb]
|
258 |
)
|
259 |
|
260 |
+
demo.launch()
|