Spaces:
Runtime error
Runtime error
captain-awesome
commited on
Commit
•
7ffdbce
1
Parent(s):
0b0f1c5
Upload 4 files
Browse files- .gitattributes +1 -0
- app.py +108 -0
- ingest.py +23 -0
- pet.pdf +3 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
pet.pdf filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain import PromptTemplate, LLMChain
|
2 |
+
from langchain.llms import CTransformers
|
3 |
+
import os
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.vectorstores import Chroma
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
8 |
+
from io import BytesIO
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
|
13 |
+
local_llm = "TheBloke/zephyr-7B-beta-GGUF"
|
14 |
+
model_file = "zephyr-7b-beta.Q4_0.gguf"
|
15 |
+
|
16 |
+
config = {
|
17 |
+
'max_new_tokens': 1024,
|
18 |
+
'repetition_penalty': 1.1,
|
19 |
+
'temperature': 0.1,
|
20 |
+
'top_k': 50,
|
21 |
+
'top_p': 0.9,
|
22 |
+
'stream': True,
|
23 |
+
'threads': int(os.cpu_count() / 2)
|
24 |
+
}
|
25 |
+
|
26 |
+
llm = CTransformers(
|
27 |
+
model=local_llm,
|
28 |
+
model_file=model_file,
|
29 |
+
model_type="mistral",
|
30 |
+
lib="avx2", #for CPU use
|
31 |
+
**config
|
32 |
+
)
|
33 |
+
|
34 |
+
print("LLM Initialized...")
|
35 |
+
|
36 |
+
|
37 |
+
prompt_template = """Use the following pieces of information to answer the user's question.
|
38 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
39 |
+
|
40 |
+
Context: {context}
|
41 |
+
Question: {question}
|
42 |
+
|
43 |
+
Only return the helpful answer below and nothing else.
|
44 |
+
Helpful answer:
|
45 |
+
"""
|
46 |
+
|
47 |
+
model_name = "BAAI/bge-large-en"
|
48 |
+
model_kwargs = {'device': 'cpu'}
|
49 |
+
encode_kwargs = {'normalize_embeddings': False}
|
50 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
51 |
+
model_name=model_name,
|
52 |
+
model_kwargs=model_kwargs,
|
53 |
+
encode_kwargs=encode_kwargs
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question'])
|
58 |
+
load_vector_store = Chroma(persist_directory="stores/pet_cosine", embedding_function=embeddings)
|
59 |
+
retriever = load_vector_store.as_retriever(search_kwargs={"k":1})
|
60 |
+
# query = "what is the fastest speed for a greyhound dog?"
|
61 |
+
# semantic_search = retriever.get_relevant_documents(query)
|
62 |
+
# print(semantic_search)
|
63 |
+
|
64 |
+
print("######################################################################")
|
65 |
+
|
66 |
+
chain_type_kwargs = {"prompt": prompt}
|
67 |
+
|
68 |
+
# qa = RetrievalQA.from_chain_type(
|
69 |
+
# llm=llm,
|
70 |
+
# chain_type="stuff",
|
71 |
+
# retriever=retriever,
|
72 |
+
# return_source_documents = True,
|
73 |
+
# chain_type_kwargs= chain_type_kwargs,
|
74 |
+
# verbose=True
|
75 |
+
# )
|
76 |
+
|
77 |
+
# response = qa(query)
|
78 |
+
|
79 |
+
# print(response)
|
80 |
+
|
81 |
+
sample_prompts = ["what is the fastest speed for a greyhound dog?", "Why should we not feed chocolates to the dogs?", "Name two factors which might contribute to why some dogs might get scared?"]
|
82 |
+
|
83 |
+
def get_response(input):
|
84 |
+
query = input
|
85 |
+
chain_type_kwargs = {"prompt": prompt}
|
86 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs=chain_type_kwargs, verbose=True)
|
87 |
+
response = qa(query)
|
88 |
+
return response
|
89 |
+
|
90 |
+
input = gr.Text(
|
91 |
+
label="Prompt",
|
92 |
+
show_label=False,
|
93 |
+
max_lines=1,
|
94 |
+
placeholder="Enter your prompt",
|
95 |
+
container=False,
|
96 |
+
)
|
97 |
+
|
98 |
+
iface = gr.Interface(fn=get_response,
|
99 |
+
inputs=input,
|
100 |
+
outputs="text",
|
101 |
+
title="My Dog PetCare Bot",
|
102 |
+
description="This is a RAG implementation based on Zephyr 7B Beta LLM.",
|
103 |
+
examples=sample_prompts,
|
104 |
+
allow_screenshot=False,
|
105 |
+
allow_flagging=False
|
106 |
+
)
|
107 |
+
|
108 |
+
iface.launch()
|
ingest.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.vectorstores import Chroma
|
4 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
5 |
+
from langchain.document_loaders import PyPDFLoader
|
6 |
+
|
7 |
+
model_name = "BAAI/bge-large-en"
|
8 |
+
model_kwargs = {'device': 'cpu'}
|
9 |
+
encode_kwargs = {'normalize_embeddings': False}
|
10 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
11 |
+
model_name=model_name,
|
12 |
+
model_kwargs=model_kwargs,
|
13 |
+
encode_kwargs=encode_kwargs
|
14 |
+
)
|
15 |
+
|
16 |
+
loader = PyPDFLoader("pet.pdf")
|
17 |
+
documents = loader.load()
|
18 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
19 |
+
texts = text_splitter.split_documents(documents)
|
20 |
+
|
21 |
+
vector_store = Chroma.from_documents(texts, embeddings, collection_metadata={"hnsw:space": "cosine"}, persist_directory="stores/pet_cosine")
|
22 |
+
|
23 |
+
print("Vector Store Created.......")
|
pet.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09130a774b5f6d864cbed5b14b88f7f6bb84e39f647d218aa54b2f89a5cf0a0f
|
3 |
+
size 2451167
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
chainlit
|
2 |
+
ctransformers
|
3 |
+
torch
|
4 |
+
sentence_transformers
|
5 |
+
chromadb
|
6 |
+
langchain
|
7 |
+
pypdf
|
8 |
+
PyPDF2
|