Spaces:
Runtime error
Runtime error
File size: 16,190 Bytes
f7172b2 93f7525 773737a f7172b2 a93f094 880820c d5d564a f7172b2 ef01944 f7172b2 ef01944 8cfaaa3 7112368 ef01944 7112368 ef01944 f7172b2 ef01944 bf1769e b62d7f8 bf1769e ef01944 6b347f1 ef01944 6b347f1 bf1769e f7172b2 bf1769e f7172b2 bafdce5 d5d564a f7172b2 bafdce5 f7172b2 bafdce5 f7172b2 bafdce5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.question_answering import load_qa_chain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFacePipeline
from langchain import PromptTemplate
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.document_loaders import (
CSVLoader,
DirectoryLoader,
GitLoader,
NotebookLoader,
OnlinePDFLoader,
PythonLoader,
TextLoader,
UnstructuredFileLoader,
UnstructuredHTMLLoader,
UnstructuredPDFLoader,
UnstructuredWordDocumentLoader,
WebBaseLoader,
PyPDFLoader,
UnstructuredMarkdownLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredPowerPointLoader,
UnstructuredODTLoader,
NotebookLoader,
UnstructuredFileLoader
)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
StoppingCriteria,
StoppingCriteriaList,
pipeline,
GenerationConfig,
TextStreamer,
pipeline
)
from langchain.llms import HuggingFaceHub
import torch
from transformers import BitsAndBytesConfig
import os
from langchain.llms import CTransformers
import streamlit as st
from langchain.document_loaders.base import BaseLoader
from langchain.schema import Document
import gradio as gr
FILE_LOADER_MAPPING = {
".csv": (CSVLoader, {"encoding": "utf-8"}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
".ipynb": (NotebookLoader, {}),
".py": (PythonLoader, {}),
# Add more mappings for other file extensions and loaders as needed
}
def load_model():
# model_path=HuggingFaceHub(repo_id="vilsonrodrigues/falcon-7b-instruct-sharded")
# if not os.path.exists(model_path):
# raise FileNotFoundError(f"No model file found at {model_path}")
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_compute_dtype=torch.float16,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_use_double_quant=True,
# )
# model_4bit = AutoModelForCausalLM.from_pretrained(
# model_path,
# device_map="auto",
# quantization_config=quantization_config,
# )
# tokenizer = AutoTokenizer.from_pretrained(model_path)
# pipeline = pipeline(
# "text-generation",
# model=model_4bit,
# tokenizer=tokenizer,
# use_cache=True,
# device_map="auto",
# max_length=700,
# do_sample=True,
# top_k=5,
# num_return_sequences=1,
# eos_token_id=tokenizer.eos_token_id,
# pad_token_id=tokenizer.eos_token_id,
# )
# llm = HuggingFacePipeline(pipeline=pipeline)
# llm = CTransformers(
# model=HuggingFaceHub(repo_id="TheBloke/Llama-2-7B-Chat-GGML", model_kwargs={"temperature":0.5, "max_length":512})
# # model_type=model_type,
# # max_new_tokens=max_new_tokens, # type: ignore
# # temperature=temperature, # type: ignore
# )
llm = CTransformers(
model="TheBloke/Llama-2-7B-Chat-GGML"
# model_type=model_type,
# max_new_tokens=max_new_tokens, # type: ignore
# temperature=temperature, # type: ignore
)
return llm
def load_document(
# file_path: str,
uploaded_files: list,
mapping: dict = FILE_LOADER_MAPPING,
default_loader: BaseLoader = UnstructuredFileLoader,
) -> Document:
loaded_documents = []
for uploaded_file in uploaded_files:
# Choose loader from mapping, load default if no match found
# ext = "." + uploaded_files.rsplit(".", 1)[-1]
ext = os.path.splitext(uploaded_file.name)[-1][1:].lower()
if ext in mapping:
loader_class, loader_args = mapping[ext]
loader = loader_class(uploaded_file, **loader_args)
else:
loader = default_loader(uploaded_file)
loaded_documents.extend(loader.load())
return loaded_documents
def create_vector_database(loaded_documents):
# DB_DIR: str = os.path.join(ABS_PATH, "db")
"""
Creates a vector database using document loaders and embeddings.
This function loads data from PDF, markdown and text files in the 'data/' directory,
splits the loaded documents into chunks, transforms them into embeddings using HuggingFace,
and finally persists the embeddings into a Chroma vector database.
"""
# Initialize loaders for different file types
# loaders = {
# "pdf": UnstructuredPDFLoader,
# "md": UnstructuredMarkdownLoader,
# "txt": TextLoader,
# "csv": CSVLoader,
# "py": PythonLoader,
# "epub": UnstructuredEPubLoader,
# "html": UnstructuredHTMLLoader,
# "ppt": UnstructuredPowerPointLoader,
# "pptx": UnstructuredPowerPointLoader,
# "doc": UnstructuredWordDocumentLoader,
# "docx": UnstructuredWordDocumentLoader,
# "odt": UnstructuredODTLoader,
# "ipynb": NotebookLoader
# }
# pdf_loader = DirectoryLoader("data/", glob="**/*.pdf", loader_cls=PyPDFLoader)
# markdown_loader = DirectoryLoader("data/", glob="**/*.md", loader_cls=UnstructuredMarkdownLoader)
# text_loader = DirectoryLoader("data/", glob="**/*.txt", loader_cls=TextLoader)
# csv_loader = DirectoryLoader("data/", glob="**/*.csv", loader_cls=CSVLoader)
# python_loader = DirectoryLoader("data/", glob="**/*.py", loader_cls=PythonLoader)
# epub_loader = DirectoryLoader("data/", glob="**/*.epub", loader_cls=UnstructuredEPubLoader)
# html_loader = DirectoryLoader("data/", glob="**/*.html", loader_cls=UnstructuredHTMLLoader)
# ppt_loader = DirectoryLoader("data/", glob="**/*.ppt", loader_cls=UnstructuredPowerPointLoader)
# pptx_loader = DirectoryLoader("data/", glob="**/*.pptx", loader_cls=UnstructuredPowerPointLoader)
# doc_loader = DirectoryLoader("data/", glob="**/*.doc", loader_cls=UnstructuredWordDocumentLoader)
# docx_loader = DirectoryLoader("data/", glob="**/*.docx", loader_cls=UnstructuredWordDocumentLoader)
# odt_loader = DirectoryLoader("data/", glob="**/*.odt", loader_cls=UnstructuredODTLoader)
# notebook_loader = DirectoryLoader("data/", glob="**/*.ipynb", loader_cls=NotebookLoader)
# FILE_LOADER_MAPPING = {
# ".csv": (CSVLoader, {"encoding": "utf-8"}),
# ".doc": (UnstructuredWordDocumentLoader, {}),
# ".docx": (UnstructuredWordDocumentLoader, {}),
# ".enex": (EverNoteLoader, {}),
# ".epub": (UnstructuredEPubLoader, {}),
# ".html": (UnstructuredHTMLLoader, {}),
# ".md": (UnstructuredMarkdownLoader, {}),
# ".odt": (UnstructuredODTLoader, {}),
# ".pdf": (PyPDFLoader, {}),
# ".ppt": (UnstructuredPowerPointLoader, {}),
# ".pptx": (UnstructuredPowerPointLoader, {}),
# ".txt": (TextLoader, {"encoding": "utf8"}),
# ".ipynb": (NotebookLoader, {}),
# ".py": (PythonLoader, {}),
# # Add more mappings for other file extensions and loaders as needed
# }
# Load documents from uploaded files using the appropriate loaders
# loaded_documents = []
# for uploaded_file in uploaded_files:
# # file_extension = os.path.splitext(uploaded_file.name)[-1].lower()[1:]
# file_extension = os.path.splitext(uploaded_file.name)[-1][1:].lower()
# if file_extension in loaders:
# # Read the content of the uploaded file
# file_content = uploaded_file.read()
# # Pass the content to the loader for processing
# loader = loaders[file_extension](file_content)
# loaded_documents.extend(loader.load())
# loader = loaders[file_extension](uploaded_file)
# # loader = loader_cls.load(uploaded_file.name) # Pass the file path to the loader constructor
# # # content = uploaded_file.read() # Read the file content
# loaded_documents.extend(loader.load())
# all_loaders = [pdf_loader, markdown_loader, text_loader, csv_loader, python_loader, epub_loader, html_loader, ppt_loader, pptx_loader, doc_loader, docx_loader, odt_loader, notebook_loader]
# Load documents from all loaders
# for loader in all_loaders:
# loaded_documents.extend(loader.load())
# Split loaded documents into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=40)
chunked_documents = text_splitter.split_documents(loaded_documents)
# Initialize HuggingFace embeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
# Create and persist a Chroma vector database from the chunked documents
db = Chroma.from_documents(
documents=chunked_documents,
embedding=embeddings,
# persist_directory=DB_DIR,
)
db.persist()
return db
def set_custom_prompt_condense():
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
return CONDENSE_QUESTION_PROMPT
def set_custom_prompt():
"""
Prompt template for retrieval for each vectorstore
"""
prompt_template = """<Instructions>
Important:
Answer with the facts listed in the list of sources below. If there isn't enough information below, say you don't know.
If asking a clarifying question to the user would help, ask the question.
ALWAYS return a "SOURCES" part in your answer, except for small-talk conversations.
Question: {question}
{context}
Question: {question}
Helpful Answer:
---------------------------
---------------------------
Sources:
"""
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
return prompt
def create_chain(llm, prompt, CONDENSE_QUESTION_PROMPT, db):
"""
Creates a Retrieval Question-Answering (QA) chain using a given language model, prompt, and database.
This function initializes a ConversationalRetrievalChain object with a specific chain type and configurations,
and returns this chain. The retriever is set up to return the top 3 results (k=3).
Args:
llm (any): The language model to be used in the RetrievalQA.
prompt (str): The prompt to be used in the chain type.
db (any): The database to be used as the
retriever.
Returns:
ConversationalRetrievalChain: The initialized conversational chain.
"""
memory = ConversationTokenBufferMemory(llm=llm, memory_key="chat_history", return_messages=True, input_key='question', max_token_limit=1000)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 3}),
return_source_documents=True,
combine_docs_chain_kwargs={"prompt": prompt},
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
memory=memory,
)
return chain
def create_retrieval_qa_bot():
if not os.path.exists(persist_dir):
raise FileNotFoundError(f"No directory found at {persist_dir}")
try:
llm = load_model() # Assuming this function exists and works as expected
except Exception as e:
raise Exception(f"Failed to load model: {str(e)}")
try:
prompt = set_custom_prompt() # Assuming this function exists and works as expected
except Exception as e:
raise Exception(f"Failed to get prompt: {str(e)}")
try:
CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense() # Assuming this function exists and works as expected
except Exception as e:
raise Exception(f"Failed to get condense prompt: {str(e)}")
try:
db = create_vector_database() # Assuming this function exists and works as expected
except Exception as e:
raise Exception(f"Failed to get database: {str(e)}")
try:
qa = create_chain(
llm=llm, prompt=prompt,CONDENSE_QUESTION_PROMPT=CONDENSE_QUESTION_PROMPT, db=db
) # Assuming this function exists and works as expected
except Exception as e:
raise Exception(f"Failed to create retrieval QA chain: {str(e)}")
return qa
def retrieve_bot_answer(query):
"""
Retrieves the answer to a given query using a QA bot.
This function creates an instance of a QA bot, passes the query to it,
and returns the bot's response.
Args:
query (str): The question to be answered by the QA bot.
Returns:
dict: The QA bot's response, typically a dictionary with response details.
"""
qa_bot_instance = create_retrieval_qa_bot()
bot_response = qa_bot_instance({"query": query})
return bot_response
# from your_module import load_model, set_custom_prompt, set_custom_prompt_condense, create_vector_database, retrieve_bot_answer
# def main():
# st.title("Docuverse")
# # Upload files
# uploaded_files = st.file_uploader("Upload your documents", type=["pdf", "md", "txt", "csv", "py", "epub", "html", "ppt", "pptx", "doc", "docx", "odt", "ipynb"], accept_multiple_files=True)
# if uploaded_files:
# # Process uploaded files
# for uploaded_file in uploaded_files:
# st.write(f"Uploaded: {uploaded_file.name}")
# st.write(f"Uploaded: {type(uploaded_file)}")
# st.write("Chat with the Document:")
# query = st.text_input("Ask a question:")
# if st.button("Get Answer"):
# if query:
# # Load model, set prompts, create vector database, and retrieve answer
# try:
# llm = load_model()
# prompt = set_custom_prompt()
# CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()
# loaded_documents = load_document(uploaded_files)
# db = create_vector_database(loaded_documents)
# response = retrieve_bot_answer(query)
# # Display bot response
# st.write("Bot Response:")
# st.write(response)
# except Exception as e:
# st.error(f"An error occurred: {str(e)}")
# else:
# st.warning("Please enter a question.")
# if __name__ == "__main__":
# main()
def main():
# Upload files
file_uploader = gr.inputs.file_uploader(multiple=True, accept_multiple_files=True, types=["pdf", "md", "txt", "csv", "py", "epub", "html", "ppt", "pptx", "doc", "docx", "odt", "ipynb"])
# Process uploaded files
def process_files(files):
for file in files:
print(f"Uploaded: {file.name}")
print(f"Uploaded: {type(file)}")
query = gr.inputs.text(label="Ask a question:")
# Load model, set prompts, create vector database, and retrieve answer
def get_answer(query, files):
try:
llm = load_model()
prompt = set_custom_prompt()
CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()
loaded_documents = load_document(files)
db = create_vector_database(loaded_documents)
response = retrieve_bot_answer(query)
# Display bot response
return response
except Exception as e:
return f"An error occurred: {str(e)}"
gr.outputs.text(get_answer, query, file_uploader)
if __name__ == "__main__":
gr.Interface(main).launch()
|