captain-awesome commited on
Commit
c790556
·
verified ·
1 Parent(s): 9bae25f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -24
app.py CHANGED
@@ -41,19 +41,9 @@ def get_vector_store_from_url(url):
41
  return vector_store
42
 
43
 
44
- def get_context_retriever_chain(vector_store):
45
  # llm = ChatOpenAI()
46
- llm = CTransformers(
47
- # model = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
48
- model= "TheBloke/Llama-2-7B-Chat-GGUF",
49
- model_file = "llama-2-7b-chat.Q3_K_S.gguf",
50
- model_type="llama",
51
- max_new_tokens = 300,
52
- temperature = 0.3,
53
- lib="avx2", # for CPU
54
- )
55
-
56
-
57
  retriever = vector_store.as_retriever()
58
 
59
  prompt = ChatPromptTemplate.from_messages([
@@ -67,17 +57,9 @@ def get_context_retriever_chain(vector_store):
67
  return retriever_chain
68
 
69
 
70
- def get_conversational_rag_chain(retriever_chain):
71
 
72
- llm = CTransformers(
73
- # model = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
74
- model= "TheBloke/Llama-2-7B-Chat-GGUF",
75
- model_file = "llama-2-7b-chat.Q3_K_S.gguf",
76
- model_type="llama",
77
- max_new_tokens = 300,
78
- temperature = 0.3,
79
- lib="avx2", # for CPU
80
- )
81
 
82
  prompt = ChatPromptTemplate.from_messages([
83
  ("system", "Answer the user's questions based on the below context:\n\n{context}"),
@@ -90,8 +72,17 @@ def get_conversational_rag_chain(retriever_chain):
90
  return create_retrieval_chain(retriever_chain, stuff_documents_chain)
91
 
92
  def get_response(user_input):
93
- retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
94
- conversation_rag_chain = get_conversational_rag_chain(retriever_chain)
 
 
 
 
 
 
 
 
 
95
 
96
  response = conversation_rag_chain.invoke({
97
  "chat_history": st.session_state.chat_history,
 
41
  return vector_store
42
 
43
 
44
+ def get_context_retriever_chain(vector_store,llm):
45
  # llm = ChatOpenAI()
46
+ llm = llm
 
 
 
 
 
 
 
 
 
 
47
  retriever = vector_store.as_retriever()
48
 
49
  prompt = ChatPromptTemplate.from_messages([
 
57
  return retriever_chain
58
 
59
 
60
+ def get_conversational_rag_chain(retriever_chain,llm):
61
 
62
+ llm=llm
 
 
 
 
 
 
 
 
63
 
64
  prompt = ChatPromptTemplate.from_messages([
65
  ("system", "Answer the user's questions based on the below context:\n\n{context}"),
 
72
  return create_retrieval_chain(retriever_chain, stuff_documents_chain)
73
 
74
  def get_response(user_input):
75
+ llm = CTransformers(
76
+ # model = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
77
+ model= "TheBloke/Llama-2-7B-Chat-GGUF",
78
+ model_file = "llama-2-7b-chat.Q3_K_S.gguf",
79
+ model_type="llama",
80
+ max_new_tokens = 300,
81
+ temperature = 0.3,
82
+ lib="avx2", # for CPU
83
+ )
84
+ retriever_chain = get_context_retriever_chain(st.session_state.vector_store,llm)
85
+ conversation_rag_chain = get_conversational_rag_chain(retriever_chain,llm)
86
 
87
  response = conversation_rag_chain.invoke({
88
  "chat_history": st.session_state.chat_history,