Spaces:
Runtime error
Runtime error
import os, json, requests, random, time, runpod | |
from urllib.parse import urlsplit | |
import numpy as np | |
import torch | |
import imageio | |
from typing import * | |
from PIL import Image | |
from easydict import EasyDict as edict | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = "/content" | |
def preprocess_image(image_path: str) -> Tuple[str, Image.Image]: | |
trial_id = "trellis-tost" | |
image = Image.open(image_path).convert("RGBA") | |
processed_image = pipeline.preprocess_image(image) | |
processed_image.save(f"{TMP_DIR}/{trial_id}.png") | |
return trial_id, processed_image | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
'trial_id': trial_id, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh, state['trial_id'] | |
def image_to_3d(image_path: str, seed: int = 0, randomize_seed: bool = True, | |
ss_guidance_strength: float = 7.5, ss_sampling_steps: int = 12, | |
slat_guidance_strength: float = 3.0, slat_sampling_steps: int = 12) -> Tuple[dict, str]: | |
trial_id, _ = preprocess_image(image_path) | |
if randomize_seed: | |
seed = np.random.randint(0, MAX_SEED) | |
outputs = pipeline.run( | |
Image.open(f"{TMP_DIR}/{trial_id}.png"), | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
trial_id = "trellis-tost" | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], str(trial_id)) | |
return state | |
def extract_glb(state: dict, mesh_simplify: float = 0.95, texture_size: int = 1024) -> str: | |
gs, mesh, trial_id = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = f"{TMP_DIR}/{trial_id}.glb" | |
glb.export(glb_path) | |
return glb_path | |
def download_file(url, save_dir, file_name): | |
os.makedirs(save_dir, exist_ok=True) | |
file_suffix = os.path.splitext(urlsplit(url).path)[1] | |
file_name_with_suffix = file_name + file_suffix | |
file_path = os.path.join(save_dir, file_name_with_suffix) | |
response = requests.get(url) | |
response.raise_for_status() | |
with open(file_path, 'wb') as file: | |
file.write(response.content) | |
return file_path | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("/content/model") | |
pipeline.cuda() | |
def generate(input): | |
values = input["input"] | |
input_image = values['input_image'] | |
input_image = download_file(url=input_image, save_dir='/content', file_name='input_image') | |
seed = values['seed'] | |
randomize_seed = values['randomize_seed'] | |
ss_guidance_strength = values['ss_guidance_strength'] | |
ss_sampling_steps = values['ss_sampling_steps'] | |
slat_guidance_strength = values['slat_guidance_strength'] | |
slat_sampling_steps = values['slat_sampling_steps'] | |
mesh_simplify = values['mesh_simplify'] | |
texture_size = values['texture_size'] | |
state = image_to_3d(image_path=input_image, | |
seed=seed, | |
randomize_seed=randomize_seed, | |
ss_guidance_strength=ss_guidance_strength, | |
ss_sampling_steps=ss_sampling_steps, | |
slat_guidance_strength=slat_guidance_strength, | |
slat_sampling_steps=slat_sampling_steps) | |
glb_path = extract_glb(state=state, mesh_simplify=mesh_simplify, texture_size=texture_size) | |
result = "/content/trellis-tost.glb" | |
try: | |
notify_uri = values['notify_uri'] | |
del values['notify_uri'] | |
notify_token = values['notify_token'] | |
del values['notify_token'] | |
discord_id = values['discord_id'] | |
del values['discord_id'] | |
if(discord_id == "discord_id"): | |
discord_id = os.getenv('com_camenduru_discord_id') | |
discord_channel = values['discord_channel'] | |
del values['discord_channel'] | |
if(discord_channel == "discord_channel"): | |
discord_channel = os.getenv('com_camenduru_discord_channel') | |
discord_token = values['discord_token'] | |
del values['discord_token'] | |
if(discord_token == "discord_token"): | |
discord_token = os.getenv('com_camenduru_discord_token') | |
job_id = values['job_id'] | |
del values['job_id'] | |
default_filename = os.path.basename(result) | |
with open(result, "rb") as file: | |
files = {default_filename: file.read()} | |
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"} | |
response = requests.post( | |
f"https://discord.com/api/v9/channels/{discord_channel}/messages", | |
data=payload, | |
headers={"Authorization": f"Bot {discord_token}"}, | |
files=files | |
) | |
response.raise_for_status() | |
result_url = response.json()['attachments'][0]['url'] | |
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"} | |
web_notify_uri = os.getenv('com_camenduru_web_notify_uri') | |
web_notify_token = os.getenv('com_camenduru_web_notify_token') | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
return {"jobId": job_id, "result": result_url, "status": "DONE"} | |
except Exception as e: | |
error_payload = {"jobId": job_id, "status": "FAILED"} | |
try: | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
except: | |
pass | |
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"} | |
finally: | |
if os.path.exists("/content/trellis-tost.glb"): | |
os.remove("/content/trellis-tost.glb") | |
if os.path.exists("/content/trellis-tost.png"): | |
os.remove("/content/trellis-tost.png") | |
runpod.serverless.start({"handler": generate}) |