trellis-pro / worker_runpod.py
camenduru's picture
Create worker_runpod.py
1dfce0c verified
raw
history blame
8.54 kB
import os, json, requests, random, time, runpod
from urllib.parse import urlsplit
import numpy as np
import torch
import imageio
from typing import *
from PIL import Image
from easydict import EasyDict as edict
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/content"
def preprocess_image(image_path: str) -> Tuple[str, Image.Image]:
trial_id = "trellis-tost"
image = Image.open(image_path).convert("RGBA")
processed_image = pipeline.preprocess_image(image)
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
def image_to_3d(image_path: str, seed: int = 0, randomize_seed: bool = True,
ss_guidance_strength: float = 7.5, ss_sampling_steps: int = 12,
slat_guidance_strength: float = 3.0, slat_sampling_steps: int = 12) -> Tuple[dict, str]:
trial_id, _ = preprocess_image(image_path)
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
outputs = pipeline.run(
Image.open(f"{TMP_DIR}/{trial_id}.png"),
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
trial_id = "trellis-tost"
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], str(trial_id))
return state
def extract_glb(state: dict, mesh_simplify: float = 0.95, texture_size: int = 1024) -> str:
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path
def download_file(url, save_dir, file_name):
os.makedirs(save_dir, exist_ok=True)
file_suffix = os.path.splitext(urlsplit(url).path)[1]
file_name_with_suffix = file_name + file_suffix
file_path = os.path.join(save_dir, file_name_with_suffix)
response = requests.get(url)
response.raise_for_status()
with open(file_path, 'wb') as file:
file.write(response.content)
return file_path
pipeline = TrellisImageTo3DPipeline.from_pretrained("/content/model")
pipeline.cuda()
def generate(input):
values = input["input"]
input_image = values['input_image']
input_image = download_file(url=input_image, save_dir='/content', file_name='input_image')
seed = values['seed']
randomize_seed = values['randomize_seed']
ss_guidance_strength = values['ss_guidance_strength']
ss_sampling_steps = values['ss_sampling_steps']
slat_guidance_strength = values['slat_guidance_strength']
slat_sampling_steps = values['slat_sampling_steps']
mesh_simplify = values['mesh_simplify']
texture_size = values['texture_size']
state = image_to_3d(image_path=input_image,
seed=seed,
randomize_seed=randomize_seed,
ss_guidance_strength=ss_guidance_strength,
ss_sampling_steps=ss_sampling_steps,
slat_guidance_strength=slat_guidance_strength,
slat_sampling_steps=slat_sampling_steps)
glb_path = extract_glb(state=state, mesh_simplify=mesh_simplify, texture_size=texture_size)
result = "/content/trellis-tost.glb"
try:
notify_uri = values['notify_uri']
del values['notify_uri']
notify_token = values['notify_token']
del values['notify_token']
discord_id = values['discord_id']
del values['discord_id']
if(discord_id == "discord_id"):
discord_id = os.getenv('com_camenduru_discord_id')
discord_channel = values['discord_channel']
del values['discord_channel']
if(discord_channel == "discord_channel"):
discord_channel = os.getenv('com_camenduru_discord_channel')
discord_token = values['discord_token']
del values['discord_token']
if(discord_token == "discord_token"):
discord_token = os.getenv('com_camenduru_discord_token')
job_id = values['job_id']
del values['job_id']
default_filename = os.path.basename(result)
with open(result, "rb") as file:
files = {default_filename: file.read()}
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
response = requests.post(
f"https://discord.com/api/v9/channels/{discord_channel}/messages",
data=payload,
headers={"Authorization": f"Bot {discord_token}"},
files=files
)
response.raise_for_status()
result_url = response.json()['attachments'][0]['url']
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
web_notify_token = os.getenv('com_camenduru_web_notify_token')
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
return {"jobId": job_id, "result": result_url, "status": "DONE"}
except Exception as e:
error_payload = {"jobId": job_id, "status": "FAILED"}
try:
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
except:
pass
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists("/content/trellis-tost.glb"):
os.remove("/content/trellis-tost.glb")
if os.path.exists("/content/trellis-tost.png"):
os.remove("/content/trellis-tost.png")
runpod.serverless.start({"handler": generate})