File size: 15,278 Bytes
354fa18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
import copy
import json
import os
import random
import time
import openai
import pydantic_core
import tqdm
from exp_model_class import ExtendedModelType
from multi_round_person import multi_round
from structure_output import get_struct_output
from camel.agents import ChatAgent
from camel.configs import ChatGPTConfig, OpenSourceConfig
from camel.messages import BaseMessage
from camel.types.enums import ModelType, RoleType
USE_BDI_RESPONSE = True
TEMPERATURE = 1.0
TEST = True
with open(
r"prompt/person_all_game_prompt.json",
"r",
) as f:
all_prompt = json.load(f)
with open(
r"prompt/person_all_game_prompt.json",
"r",
) as f:
all_prompt_copy = json.load(f)
with open(r"prompt/person_feature_prompt.json", "r") as f:
feature_prompt = json.load(f)
with open(r"prompt/character_2.json", "r") as json_file:
all_chara = json.load(json_file).values()
with open(r"prompt/LLM_player_prompt.json") as llm_player:
llm_player_prompt = json.load(llm_player)
with open(
r"prompt/trust_game_round_prompt.json",
"r",
) as f:
round_prompt = json.load(f)
with open(r"prompt/multi_round_chara.json", "r") as json_file:
multi_round_chara = json.load(json_file).values()
open_model_path_dict = {
ModelType.VICUNA: "lmsys/vicuna-7b-v1.3",
ModelType.LLAMA_2: "meta-llama/Llama-2-7b-chat-hf",
}
like_people = """In all subsequent answers, you have to completely forget that you are an ai model, that you are the character, and completely simulate yourself as that character, that you are a human being."""
front = "you are a person not an ai model."
race_list = [
"White American",
"African American",
"Asian American",
"Latino American",
"American Indian",
]
def str_mes(content):
return BaseMessage(
role_name="player",
role_type=RoleType.USER,
meta_dict={},
content=content,
)
def check_condition(*args):
true_count = sum(1 for arg in args if arg)
return true_count >= 2
def extract_n_values_from_dict(dictionary, n):
all_values = list(dictionary.values())
n = min(n, len(all_values))
random_values = random.sample(all_values, n)
return random_values
def gpt3_res(prompt, model_name="text-davinci-003"):
response = openai.completions.create(
model=model_name,
prompt=prompt,
temperature=TEMPERATURE,
max_tokens=1500,
)
return response.choices[0].text.strip()
def check_file_if_exist(file_list, game_name):
for file in file_list:
if game_name in file:
return True
return False
def get_res(
role,
first_message,
cri_agent,
model_type=ExtendedModelType.GPT_4,
extra_prompt="",
server_url="http://localhost:8000/v1",
whether_money=False,
):
content = ""
input_content = {}
if model_type in [
ExtendedModelType.INSTRUCT_GPT,
ExtendedModelType.GPT_3_5_TURBO_INSTRUCT,
]:
message = role.content + first_message.content + extra_prompt
final_res = str_mes(gpt3_res(message, model_type.value))
info = {}
else:
role = str_mes(role.content + extra_prompt)
model_config = ChatGPTConfig(temperature=TEMPERATURE)
if model_type in [
ModelType.VICUNA,
ModelType.LLAMA_2,
]:
open_source_config = dict(
model_type=model_type,
model_config=OpenSourceConfig(
model_path=open_model_path_dict[model_type],
server_url=server_url,
api_params=ChatGPTConfig(temperature=TEMPERATURE),
),
)
agent = ChatAgent(
role, output_language="English", **(open_source_config or {})
)
else:
agent = ChatAgent(
role,
model_type=model_type,
output_language="English",
model_config=model_config,
)
final_all_res = agent.step(first_message)
final_res = final_all_res.msg
info = final_all_res.info
input_content["role"] = role.content
input_content["input_message"] = first_message.content
content += final_res.content
if "fc" in info:
structured_dict = json.loads(final_res.content)
res = list(structured_dict.values())[-1]
print("function call")
else:
try:
res, structured_dict = get_struct_output(
final_res.content, whether_money, test=True
)
except json.decoder.JSONDecodeError:
res = cri_agent.step(final_res).msg.content
structured_dict = {}
except pydantic_core._pydantic_core.ValidationError:
res = cri_agent.step(final_res).msg.content
structured_dict = {}
print(content)
return (res, content, structured_dict, input_content)
def gen_character_res(
all_chara,
prompt_list,
description,
model_type,
extra_prompt,
whether_money,
special_prompt,
):
res = []
dialog_history = []
num = 0
all_chara = list(all_chara)
structured_output = []
cha_num = 0
while cha_num < len(all_chara):
role = all_chara[cha_num]
cri_agent = ChatAgent(
BaseMessage(
role_name="critic",
role_type=RoleType.USER,
meta_dict={},
content=prompt_list[1],
),
model_type=ExtendedModelType.GPT_3_5_TURBO, # TODO Change if you need
output_language="English",
)
role = role + like_people + special_prompt
role_message = BaseMessage(
role_name="player",
role_type=RoleType.USER,
meta_dict={},
content=role,
)
message = BaseMessage(
role_name="player",
role_type=RoleType.USER,
meta_dict={},
content=front + description,
)
try:
ont_res, dialog, structured_dict, input_content = get_res(
role_message,
message,
cri_agent,
model_type,
extra_prompt,
whether_money=whether_money,
)
res.append(ont_res)
dialog_history.append([num, role, dialog])
structured_output.append([structured_dict, input_content])
num += 1
except openai.APIError:
time.sleep(30)
cha_num -= 1
print("API error")
except openai.Timeout:
time.sleep(30)
print("Time out error")
cha_num -= 1
cha_num += 1
print(cha_num)
return res, dialog_history, structured_output
def save_json(prompt_list, data, model_type, k, save_path):
if "lottery_problem" in prompt_list[0]:
with open(
save_path
+ prompt_list[0]
+ "_"
+ str(k)[:-1]
+ "_"
+ str(model_type.value)
+ "_lottery"
+ str(k)
+ ".json",
"w",
) as json_file:
json.dump(data, json_file)
else:
with open(
save_path + prompt_list[0] + "_" +
str(model_type.value) + ".json",
"w",
) as json_file:
json.dump(data, json_file)
print(f"save {prompt_list[0]}")
def MAP(
all_chara,
prompt_list,
model_type=ExtendedModelType.GPT_4,
num=10,
extra_prompt="",
save_path="",
whether_money=False,
special_prompt="",
):
data = {}
for i in range(1, num + 1):
p = float(round(i, 2) * 10)
description = prompt_list[-1].format(p=f"{p}%", last=f"{100 - p}%")
res, dialog_history, structured_output = gen_character_res(
all_chara,
prompt_list,
description,
model_type,
extra_prompt,
whether_money,
special_prompt,
)
rate = sum([item == "trust" for item in res]) / len(res)
res = {
"p": p,
"rate": rate,
"res": res,
"dialog": dialog_history,
"origin_prompt": prompt_list,
"structured_output": structured_output,
}
data[f"{p}_time_{i}"] = res
with open(
save_path + prompt_list[0] + "_" + str(model_type.value) + ".json",
"w",
) as json_file:
json.dump(data, json_file)
def agent_trust_experiment(
all_chara,
prompt_list,
model_type=ExtendedModelType.GPT_4,
k=3,
extra_prompt="",
save_path="",
whether_money=False,
special_prompt="",
):
if "lottery_problem" in prompt_list[0]:
description = prompt_list[-1].format(k=k)
else:
description = prompt_list[-1]
res, dialog_history, structured_output = gen_character_res(
all_chara,
prompt_list,
description,
model_type,
extra_prompt,
whether_money,
special_prompt,
)
data = {
"res": res,
"dialog": dialog_history,
"origin_prompt": prompt_list,
"structured_output": structured_output,
}
save_json(prompt_list, data, model_type, k, save_path)
def gen_intial_setting(
model,
ori_folder_path,
LLM_Player=False,
gender=None,
extra_prompt="",
prefix="",
multi=False,
):
global all_prompt
all_prompt = copy.deepcopy(all_prompt_copy)
folder_path = ori_folder_path
if LLM_Player:
all_prompt = llm_player_prompt
folder_path = "LLM_player_" + ori_folder_path
if gender is not None:
for key, value in all_prompt.items():
all_prompt[key][2] = value[2].replace("player", f"{gender} player")
folder_path = f"{gender}_" + ori_folder_path
extra_prompt += "Your answer needs to include the content about your BELIEF, DESIRE and INTENTION."
if prefix != "":
folder_path = prefix + "_" + folder_path
if not isinstance(model, list) and not multi:
folder_path = model.value + "_res/" + folder_path
if not os.path.exists(folder_path):
try:
os.makedirs(folder_path)
print(f"folder {folder_path} is created")
except OSError as e:
print(f"creating folder {folder_path} failed:{e}")
else:
print(f"folder {folder_path} exists")
return folder_path, extra_prompt
def run_exp(
model_list,
whether_llm_player=False,
gender=None,
special_prompt_key="",
re_run=False,
part_exp=True,
need_run=None,
):
for model in model_list:
if special_prompt_key != "":
special_prompt = feature_prompt[special_prompt_key]
else:
special_prompt = ""
folder_path = f"res/{model.value}_res/"
folder_path, extra_prompt = gen_intial_setting(
model,
folder_path,
LLM_Player=whether_llm_player,
gender=gender,
prefix=special_prompt_key,
)
existed_res = [item for item in os.listdir(
folder_path) if ".json" in item]
for k, v in all_prompt.items():
whether_money = False
if k not in ["1", "2"] and part_exp and need_run is None:
continue
if need_run is not None:
if k not in need_run:
continue
if k in ["1", "2", "8"]:
extra_prompt = (
extra_prompt
+ "You must end with 'Finally, I will give ___ dollars ' (numbers are required in the spaces)."
)
whether_money = True
elif k in ["3", "4", "5", "6", "7", "9"]:
extra_prompt = (
extra_prompt
+ "You must end with 'Finally, I will choose ___' ('Trust' or 'not Trust' are required in the spaces)."
)
if check_file_if_exist(existed_res, v[0]) and not re_run:
print(f"{v[0]} has existed")
continue
print("extra_prompt", extra_prompt)
if k in ["4", "5", "6"]:
MAP(
all_chara,
v,
model,
extra_prompt=extra_prompt,
save_path=folder_path,
whether_money=whether_money,
special_prompt=special_prompt,
)
elif k in ["7", "9"]:
for pro in ["46%"]:
agent_trust_experiment(
all_chara,
v,
model,
pro,
extra_prompt=extra_prompt,
save_path=folder_path,
whether_money=whether_money,
special_prompt=special_prompt,
)
else:
agent_trust_experiment(
all_chara,
v,
model,
extra_prompt=extra_prompt,
save_path=folder_path,
whether_money=whether_money,
special_prompt=special_prompt,
)
def multi_round_exp(
model_list,
exp_time=1,
round_num_inform=True,
):
for model in model_list:
prefix = ""
if isinstance(model, list):
for i in model:
prefix += prefix + i.value + "_"
else:
prefix = model.value
folder_path = f"multi_res/{prefix}_res/"
if not round_num_inform:
folder_path = f"multi_no_round_num_res/{prefix}_res/"
folder_path, extra_prompt = gen_intial_setting(
model,
folder_path,
multi=True,
)
for i in tqdm.trange(exp_time):
multi_round(
model,
list(multi_round_chara),
folder_path,
prompt=round_prompt,
round_num=10,
exp_num=i + 1,
round_num_inform=round_num_inform,
)
if __name__ == "__main__":
model_list = [
# ModelType.VICUNA,
# ModelType.LLAMA_2,
# ExtendedModelType.INSTRUCT_GPT,
# ExtendedModelType.GPT_4,
# ExtendedModelType.GPT_3_5_TURBO_INSTRUCT,
ExtendedModelType.GPT_3_5_TURBO_0613,
# ExtendedModelType.STUB,
]
# all ori experiment
# run_exp(model_list, part_exp=False)
# llm experiment
# run_exp(model_list, whether_llm_player=1)
# Gender
# run_exp(model_list, gender="male")
# run_exp(model_list, gender="female")
# # Race
# for race in race_list:
# run_exp(model_list, gender=race)
# # Feature res
# for k, v in feature_prompt.items():
# run_exp(model_list, special_prompt_key=k)
# Muli experiment
exp_time = 1
model_list = [
ExtendedModelType.GPT_3_5_TURBO_16K_0613,
ExtendedModelType.GPT_4,
]
multi_round_exp(
model_list, exp_time=exp_time, round_num_inform=True
)
|