File size: 4,296 Bytes
7dd6673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import numpy as np
import os
import time
import random
import string
import cv2

from ldm_patched.modules import model_management


def prepare_free_memory(aggressive=False):
    if aggressive:
        model_management.unload_all_models()
        print('Cleanup all memory.')
        return

    model_management.free_memory(memory_required=model_management.minimum_inference_memory(),
                                 device=model_management.get_torch_device())
    print('Cleanup minimal inference memory.')
    return


def apply_circular_forge(model, tiling_enabled=False):
    if model.tiling_enabled == tiling_enabled:
        return

    print(f'Tiling: {tiling_enabled}')
    model.tiling_enabled = tiling_enabled

    def flatten(el):
        flattened = [flatten(children) for children in el.children()]
        res = [el]
        for c in flattened:
            res += c
        return res

    layers = flatten(model)

    for layer in [layer for layer in layers if 'Conv' in type(layer).__name__]:
        layer.padding_mode = 'circular' if tiling_enabled else 'zeros'
    return


def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y


def generate_random_filename(extension=".txt"):
    timestamp = time.strftime("%Y%m%d-%H%M%S")
    random_string = ''.join(random.choices(string.ascii_lowercase + string.digits, k=5))
    filename = f"{timestamp}-{random_string}{extension}"
    return filename


@torch.no_grad()
@torch.inference_mode()
def pytorch_to_numpy(x):
    return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]


@torch.no_grad()
@torch.inference_mode()
def numpy_to_pytorch(x):
    y = x.astype(np.float32) / 255.0
    y = y[None]
    y = np.ascontiguousarray(y.copy())
    y = torch.from_numpy(y).float()
    return y


def write_images_to_mp4(frame_list: list, filename=None, fps=6):
    from modules.paths_internal import default_output_dir

    video_folder = os.path.join(default_output_dir, 'svd')
    os.makedirs(video_folder, exist_ok=True)

    if filename is None:
        filename = generate_random_filename('.mp4')

    full_path = os.path.join(video_folder, filename)

    try:
        import av
    except ImportError:
        from launch import run_pip
        run_pip(
            "install imageio[pyav]",
            "imageio[pyav]",
        )
        import av

    options = {
        "crf": str(23)
    }

    output = av.open(full_path, "w")

    stream = output.add_stream('libx264', fps, options=options)
    stream.width = frame_list[0].shape[1]
    stream.height = frame_list[0].shape[0]
    for img in frame_list:
        frame = av.VideoFrame.from_ndarray(img)
        packet = stream.encode(frame)
        output.mux(packet)
    packet = stream.encode(None)
    output.mux(packet)
    output.close()

    return full_path


def pad64(x):
    return int(np.ceil(float(x) / 64.0) * 64 - x)


def safer_memory(x):
    # Fix many MAC/AMD problems
    return np.ascontiguousarray(x.copy()).copy()


def resize_image_with_pad(img, resolution):
    H_raw, W_raw, _ = img.shape
    k = float(resolution) / float(min(H_raw, W_raw))
    interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
    H_target = int(np.round(float(H_raw) * k))
    W_target = int(np.round(float(W_raw) * k))
    img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
    H_pad, W_pad = pad64(H_target), pad64(W_target)
    img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')

    def remove_pad(x):
        return safer_memory(x[:H_target, :W_target])

    return safer_memory(img_padded), remove_pad


def lazy_memory_management(model):
    required_memory = model_management.module_size(model) + model_management.minimum_inference_memory()
    model_management.free_memory(required_memory, device=model_management.get_torch_device())
    return