File size: 2,494 Bytes
2c9628e
 
 
 
d4d6f06
2c9628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d6f06
 
2c9628e
 
 
 
 
 
 
 
 
d4d6f06
2c9628e
 
 
 
 
d4d6f06
 
2c9628e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import json
import glob
from collections import defaultdict
import pandas as pd
import gradio as gr
from content import *
from css import *
import glob

ARC = "arc"
HELLASWAG = "hellaswag"
MMLU = "mmlu"
TRUTHFULQA = "truthfulqa"
BENCHMARKS = [ARC, HELLASWAG, MMLU, TRUTHFULQA]

METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]

LANGS = 'ar,bn,ca,da,de,es,eu,fr,gu,hi,hr,hu,hy,id,it,kn,ml,mr,ne,nl,pt,ro,ru,sk,sr,sv,ta,te,uk,vi,zh'.split(',')

LANG_NAME = {
    'ar': 'Arabic',
    'bn': 'Bengali',
    'ca': 'Catalan',
    'da': 'Danish',
    'de': 'German',
    'es': 'Spanish',
    'eu': 'Basque',
    'fr': 'French',
    'gu': 'Gujarati',
    'hi': 'Hindi',
    'hr': 'Croatian',
    'hu': 'Hungarian',
    'hy': 'Armenian',
    'id': 'Indonesian',
    'it': 'Italian',
    'kn': 'Kannada',
    'ml': 'Malayalam',
    'mr': 'Marathi',
    'ne': 'Nepali',
    'nl': 'Dutch',
    'pt': 'Portuguese',
    'ro': 'Romanian',
    'ru': 'Russian',
    'sk': 'Slovak',
    'sr': 'Serbian',
    'sv': 'Swedish',
    'ta': 'Tamil',
    'te': 'Telugu',
    'uk': 'Ukrainian',
    'vi': 'Vietnamese',
    'zh': 'Chinese'
}

NONE_COL = "None"


COLS = ["Method", "Model" , "SS Easy", "SS Medium", "SS Hard", "MS Easy", "MS Meduium", "MS Hard", "Overall", NONE_COL]
TYPES = ["str", "str", "number", "number", "number", "number", "number", "number", "number", "number" , "number"]

df = []
row = ["React", "Qwen-plus" , "10.5", "20.6", "30.4", "10.5", "20.6", "30.4", "20", NONE_COL]

df.append(row)
df.append(row)
df.append(row)
df.append(row)
df = pd.DataFrame.from_records(df, columns=COLS)
df = df.sort_values(by=["Method", "Overall"], ascending=False)
df = df[COLS]
demo = gr.Blocks(css=CUSTOM_CSS)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRO_TEXT, elem_classes="markdown-text")
    gr.Markdown(HOW_TO, elem_classes="markdown-text")
    print(TYPES)
    print(df.columns)
    with gr.Group():
        with gr.Tab("Results: Agent"):
            leaderboard_table_test = gr.components.Dataframe(
                value=df, datatype=TYPES, interactive=False,
                column_widths = ["20%"] * len(df.columns)
            )
        with gr.Tab("Results: RAG-system"):
            leaderboard_table_val = gr.components.Dataframe(
                value=df, datatype=TYPES, interactive=False,
                column_widths=["20%"] 
        )


    gr.Markdown(CREDIT, elem_classes="markdown-text")
    gr.Markdown(CITATION, elem_classes="markdown-text")

demo.launch(share=True)