JGN / util.py
cagataydag's picture
Duplicate from akhaliq/JoJoGAN
4750bc6
from matplotlib import pyplot as plt
import torch
import torch.nn.functional as F
import os
import cv2
import dlib
from PIL import Image
import numpy as np
import math
import torchvision
import scipy
import scipy.ndimage
import torchvision.transforms as transforms
from huggingface_hub import hf_hub_download
shape_predictor_path = hf_hub_download(repo_id="akhaliq/jojogan_dlib", filename="shape_predictor_68_face_landmarks.dat")
google_drive_paths = {
"models/stylegan2-ffhq-config-f.pt": "https://drive.google.com/uc?id=1Yr7KuD959btpmcKGAUsbAk5rPjX2MytK",
"models/dlibshape_predictor_68_face_landmarks.dat": "https://drive.google.com/uc?id=11BDmNKS1zxSZxkgsEvQoKgFd8J264jKp",
"models/e4e_ffhq_encode.pt": "https://drive.google.com/uc?id=1o6ijA3PkcewZvwJJ73dJ0fxhndn0nnh7",
"models/restyle_psp_ffhq_encode.pt": "https://drive.google.com/uc?id=1nbxCIVw9H3YnQsoIPykNEFwWJnHVHlVd",
"models/arcane_caitlyn.pt": "https://drive.google.com/uc?id=1gOsDTiTPcENiFOrhmkkxJcTURykW1dRc",
"models/arcane_caitlyn_preserve_color.pt": "https://drive.google.com/uc?id=1cUTyjU-q98P75a8THCaO545RTwpVV-aH",
"models/arcane_jinx_preserve_color.pt": "https://drive.google.com/uc?id=1jElwHxaYPod5Itdy18izJk49K1nl4ney",
"models/arcane_jinx.pt": "https://drive.google.com/uc?id=1quQ8vPjYpUiXM4k1_KIwP4EccOefPpG_",
"models/disney.pt": "https://drive.google.com/uc?id=1zbE2upakFUAx8ximYnLofFwfT8MilqJA",
"models/disney_preserve_color.pt": "https://drive.google.com/uc?id=1Bnh02DjfvN_Wm8c4JdOiNV4q9J7Z_tsi",
"models/jojo.pt": "https://drive.google.com/uc?id=13cR2xjIBj8Ga5jMO7gtxzIJj2PDsBYK4",
"models/jojo_preserve_color.pt": "https://drive.google.com/uc?id=1ZRwYLRytCEKi__eT2Zxv1IlV6BGVQ_K2",
"models/jojo_yasuho.pt": "https://drive.google.com/uc?id=1grZT3Gz1DLzFoJchAmoj3LoM9ew9ROX_",
"models/jojo_yasuho_preserve_color.pt": "https://drive.google.com/uc?id=1SKBu1h0iRNyeKBnya_3BBmLr4pkPeg_L",
"models/supergirl.pt": "https://drive.google.com/uc?id=1L0y9IYgzLNzB-33xTpXpecsKU-t9DpVC",
"models/supergirl_preserve_color.pt": "https://drive.google.com/uc?id=1VmKGuvThWHym7YuayXxjv0fSn32lfDpE",
}
@torch.no_grad()
def load_model(generator, model_file_path):
ensure_checkpoint_exists(model_file_path)
ckpt = torch.load(model_file_path, map_location=lambda storage, loc: storage)
generator.load_state_dict(ckpt["g_ema"], strict=False)
return generator.mean_latent(50000)
def ensure_checkpoint_exists(model_weights_filename):
if not os.path.isfile(model_weights_filename) and (
model_weights_filename in google_drive_paths
):
gdrive_url = google_drive_paths[model_weights_filename]
try:
from gdown import download as drive_download
drive_download(gdrive_url, model_weights_filename, quiet=False)
except ModuleNotFoundError:
print(
"gdown module not found.",
"pip3 install gdown or, manually download the checkpoint file:",
gdrive_url
)
if not os.path.isfile(model_weights_filename) and (
model_weights_filename not in google_drive_paths
):
print(
model_weights_filename,
" not found, you may need to manually download the model weights."
)
# given a list of filenames, load the inverted style code
@torch.no_grad()
def load_source(files, generator, device='cuda'):
sources = []
for file in files:
source = torch.load(f'./inversion_codes/{file}.pt')['latent'].to(device)
if source.size(0) != 1:
source = source.unsqueeze(0)
if source.ndim == 3:
source = generator.get_latent(source, truncation=1, is_latent=True)
source = list2style(source)
sources.append(source)
sources = torch.cat(sources, 0)
if type(sources) is not list:
sources = style2list(sources)
return sources
def display_image(image, size=None, mode='nearest', unnorm=False, title=''):
# image is [3,h,w] or [1,3,h,w] tensor [0,1]
if not isinstance(image, torch.Tensor):
image = transforms.ToTensor()(image).unsqueeze(0)
if image.is_cuda:
image = image.cpu()
if size is not None and image.size(-1) != size:
image = F.interpolate(image, size=(size,size), mode=mode)
if image.dim() == 4:
image = image[0]
image = image.permute(1, 2, 0).detach().numpy()
plt.figure()
plt.title(title)
plt.axis('off')
plt.imshow(image)
def get_landmark(filepath, predictor):
"""get landmark with dlib
:return: np.array shape=(68, 2)
"""
detector = dlib.get_frontal_face_detector()
img = dlib.load_rgb_image(filepath)
dets = detector(img, 1)
assert len(dets) > 0, "Face not detected, try another face image"
for k, d in enumerate(dets):
shape = predictor(img, d)
t = list(shape.parts())
a = []
for tt in t:
a.append([tt.x, tt.y])
lm = np.array(a)
return lm
def align_face(filepath, output_size=256, transform_size=1024, enable_padding=True):
"""
:param filepath: str
:return: PIL Image
"""
predictor = dlib.shape_predictor(shape_predictor_path)
lm = get_landmark(filepath, predictor)
lm_chin = lm[0: 17] # left-right
lm_eyebrow_left = lm[17: 22] # left-right
lm_eyebrow_right = lm[22: 27] # left-right
lm_nose = lm[27: 31] # top-down
lm_nostrils = lm[31: 36] # top-down
lm_eye_left = lm[36: 42] # left-clockwise
lm_eye_right = lm[42: 48] # left-clockwise
lm_mouth_outer = lm[48: 60] # left-clockwise
lm_mouth_inner = lm[60: 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# read image
img = Image.open(filepath)
transform_size = output_size
enable_padding = True
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), Image.ANTIALIAS)
# Return aligned image.
return img
def strip_path_extension(path):
return os.path.splitext(path)[0]