import streamlit as st from sklearn import neighbors, datasets with st.form(key='my_form'): sLen = st.slider('Sepal lenght (cm.)', 0.0, 10.0) sWid = st.slider('Sepal width (cm.)', 0.0, 10.0) pLen = st.slider('Petal lenght (cm.)', 0.0, 10.0) pWid = st.slider('Pepal width (cm.)', 0.0, 10.0) st.form_submit_button('Predict') iris = datasets.load_iris() X,y = iris.data, iris.target knn = neighbors.KNeighborsClassifier(n_neighbors=2) #k = 3,4,5,6 knn.fit(X,y) predict = knn.predict([[sLen,sWid,pLen,pWid]]) st.text(iris.target_names[predict])